Advertisement

The Response of Photosynthesis to Soil Water Stress

  • Jaume Flexas
  • Alexander Gallé
  • Jeroni Galmés
  • Miquel Ribas-Carbo
  • Hipólito Medrano
Chapter

Abstract

The physiological and molecular basis of photosynthetic responses to limited soil water availability (water stress) has been intensively examined over the last decade(s). Therefore, this chapter highlights the major achievements of the underlying processes of photosynthetic limitation under drought, an increasingly important issue within the context of climate change. Restricted CO2 diffusion to the sites of carboxylation inside the chloroplast has been demonstrated to be the main limiting factor for photosynthesis, particularly during the early phases of stress. Stomatal (g s ) and mesophyll conductance (g m ), the two leaf diffusion components, contribute differently to this limitation, being largely influenced by the degree of water deficit. Thus, photosynthetic acclimation to drought and its recovery from drought depend primarily on the capacity to adjust g m and g s rapidly. The basis of g m and g s regulation is not fully understood, but several genetic, metabolic, and structural factors involved have been recently described. Secondary stress factors such as excessive light and elevated temperatures affect photosynthetic performance too, implying efficient photoprotection a necessary feature for stress-resistant plants.

Keywords

Water Stress Stomatal Closure Leaf Water Potential Rubisco Activase Stomatal Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aganchich B, Wahbi S, Loreto F, Centritto M (2009) Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Tree Physiol 29:685–696PubMedCrossRefGoogle Scholar
  2. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244PubMedCrossRefGoogle Scholar
  3. Bogeat-Triboulot M-B, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J-F, Polle A, Kangasjarvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892PubMedCrossRefGoogle Scholar
  4. Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681CrossRefGoogle Scholar
  5. Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584PubMedCrossRefGoogle Scholar
  6. Cai H, Biswas DK, Shang AQ, Zhao LJ, Li WD (2007) Photosynthetic response to water stress and changes in metabolites in Jasminum sambac. Photosynthetica 45:503–509CrossRefGoogle Scholar
  7. Carmo-Silva AE, Soares AS, da Silva JM, da Silva AB, Keys AJ, Arrabaça MC (2007) Photosynthetic responses of three C4 grasses of different metabolic subtypes to water deficit. Funct Plant Biol 34:204–213CrossRefGoogle Scholar
  8. Carmo-Silva A, Bernardes da Silva A, Keys A, Parry M, Arrabaça MC (2008a) The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Photosynth Res 97:223–233PubMedCrossRefGoogle Scholar
  9. Carmo-Silva AE, Powers SJ, Keys AJ, Arrabaça MC, Parry MAJ (2008b) Photorespiration in C4 grasses remains slow under drought conditions. Plant, Cell Environ 31:925–940CrossRefGoogle Scholar
  10. Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16CrossRefGoogle Scholar
  11. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  12. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384PubMedCrossRefGoogle Scholar
  13. Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitation of photosynthetic capacity of salt-stressed olive saplings. Plant, Cell Environ 26:585–594CrossRefGoogle Scholar
  14. CentrittoM Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:275–286CrossRefGoogle Scholar
  15. Cornic G, Le Gouallec JL, Briantais JM, Hodges M (1989) Effect of dehydration and high light on photosynthesis of two C3 plants. Phaseolus vulgaris L. and Elastostema repens (hour.) Hall f.). Planta 177:84–90CrossRefGoogle Scholar
  16. Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188CrossRefGoogle Scholar
  17. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefGoogle Scholar
  18. Dat J, Vandenabeele S, Vranova E, Montagu MV, Inze D, Breusegem FV (2000) Dual action of the active oxygen species during plant stress responses. Cellular and molecular life sciences: CMLS 57:779–795PubMedCrossRefGoogle Scholar
  19. Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21PubMedCrossRefGoogle Scholar
  20. Dietz KJ, Heber U (1983) Carbon dioxide gas exchange and the energy status of leaves of Primula palinuri under water stress. Planta 158:349–356CrossRefGoogle Scholar
  21. Dos Santos MG, Vasconcelos Ribeiro R, Ferraz de Oliveira R, Machado EC, Pimentel C (2006) The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Sci 170:659–664CrossRefGoogle Scholar
  22. Du YC, Kawamitsu Y, Nose A, Hiyane S, Murayama S, Wasano K, Uchida Y (1996) Effects of water stress on carbon exchange rate and activities of of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.). Aust J Plant Physiol 23:719–726CrossRefGoogle Scholar
  23. Fereres E, Cruz-Romero G, Hoffman GJ, Rawlins SL (1979) Recovery of orange trees following severe water stress. J Appl Ecol 16:833–842CrossRefGoogle Scholar
  24. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189PubMedCrossRefGoogle Scholar
  25. Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471CrossRefGoogle Scholar
  26. Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004a) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279PubMedCrossRefGoogle Scholar
  27. Flexas J, Bota J, Cifre J, Escalona JM, Galmés J, Gulias J, Lefi EK, Martinez-Canellas SF, Moreno MT, Ribas-Carbo M, Riera D, Sampol B, Medrano H (2004b) Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Ann Appl Biol 144:273–283CrossRefGoogle Scholar
  28. Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbo M (2006a) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352CrossRefGoogle Scholar
  29. Flexas J, Ribas-Carbo M, Bota J, Galmés J, Henkle M, Martinez-Canellas S, Medrano H (2006b) Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82PubMedCrossRefGoogle Scholar
  30. Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006c) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439PubMedCrossRefGoogle Scholar
  31. Flexas J, Baron M, Bota J, Ducruet J-M, Galle A, Galmés J, Jimenez M, Pou A, Ribas-Carbo M, Sajnani C, Tomas M, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandierixV. rupestris). J Exp Bot 60:2361–2377PubMedCrossRefGoogle Scholar
  32. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  33. Galle A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica L.) under severe drought stress and during recovery. Physiol Plant 131:412–421PubMedCrossRefGoogle Scholar
  34. Galle A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810PubMedCrossRefGoogle Scholar
  35. Galle A, Florez-Sarasa I, Tomas M, Pou A, Medrano H, Ribas-Carbo M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390PubMedCrossRefGoogle Scholar
  36. Galle A, Florez-Sarasa I, Aououad HE, Flexas J (2011) The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles. J Exp Bot 62:5207–5216PubMedCrossRefGoogle Scholar
  37. Galmés J, Medrano H, Flexas J (2006) Acclimation of rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. J Exp Bot 57:3659–3667PubMedCrossRefGoogle Scholar
  38. Galmés J, Medrano H, Flexas J (2007a) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93PubMedCrossRefGoogle Scholar
  39. Galmés J, Flexas J, Save R, Medrano H (2007b) Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290:139–155CrossRefGoogle Scholar
  40. Galmés J, Conesa MA, Ochogavia JM, Perdomo JA, Francis DM, Ribas-Carbo M, Save R, Flexas J, Medrano H, Cifre J (2011a) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell Environ 34:245–260CrossRefGoogle Scholar
  41. Galmés J, Ribas-Carbo M, Medrano H, Flexas J (2011b) Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J Exp Bot 62:653–665PubMedCrossRefGoogle Scholar
  42. Gao D, Gao Q, Xu H-Y, Ma F, Zhao C-M, Liu JQ (2009) Physiological responses to gradual drought stress in the diploid hybrid Pinus densata and its two parental species. Trees 213:717–728CrossRefGoogle Scholar
  43. Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644PubMedCrossRefGoogle Scholar
  44. Ghannoun O, von Caemmerer S, Conroy JP (2002) The effect of drought on plant water use efficiency on nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct Plant Biol 29:1337–1348CrossRefGoogle Scholar
  45. Ghannoum O, Conroy JP, Driscoll SP, Paul MJ, Foyer CH, Lawlor DW (2003) Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. New Phytol 159:599–608CrossRefGoogle Scholar
  46. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104CrossRefGoogle Scholar
  47. Graan T, Boyer JS (1990) Very high CO2 partially restores photosynthesis in sunflower at low water potentials. Planta 181:378–384CrossRefGoogle Scholar
  48. Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell Environ 28:834–849CrossRefGoogle Scholar
  49. Grzesiak MT, Grzesiak S, Skoczowski A (2006) Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance. Photosynthetica 44:561–568CrossRefGoogle Scholar
  50. Hura T, Grzesiak S, Hura K, Grzesiak M, Rzepka A (2006) Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. Acta Physiologiae Plantarum 28:433–443CrossRefGoogle Scholar
  51. Hura T, Hura K, Grzesiak M, Rzepka A (2007) Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiologiae Plantarum 29:103–113CrossRefGoogle Scholar
  52. Jiang Q, Roche D, Monaco TA, Hole D (2006) Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biology 8:515–521PubMedCrossRefGoogle Scholar
  53. Kaiser WM (1987) Effects of water deficit on photosynthetic capacity. Physiol Plant 71:142–149CrossRefGoogle Scholar
  54. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363PubMedCrossRefGoogle Scholar
  55. Kirschbaum MUF (1988) Recovery of photosynthesis from water-stress in Eucalyptus pauciflora—A process in two stages. Plant, Cell Environ 11:685–694CrossRefGoogle Scholar
  56. Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2003) Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant 118:406–413CrossRefGoogle Scholar
  57. Kottapalli KR, Rakwal R, Shibato J, Burow G, Tissue D, Burke J, Puppala N, Burow M, Payton P (2009) Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant, Cell Environ 32:380–407CrossRefGoogle Scholar
  58. Lal A, Edwards GE (1996) Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity. Funct Plant Biol 23:403–412Google Scholar
  59. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell Environ 25:275–294CrossRefGoogle Scholar
  60. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579PubMedCrossRefGoogle Scholar
  61. Levine A (1999) Oxidative stress as a regulator of environmental responses in plants. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. CRC Press, ISBN 0824700449, 9780824700447, pp 248–266Google Scholar
  62. Liu C-C, Liu Y-G, Guo K, Zheng Y-R, Li G-Q, Yu L-F, Yang R (2010) Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol Plant 139:39–54PubMedCrossRefGoogle Scholar
  63. Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant, Cell Environ 26:595–601CrossRefGoogle Scholar
  64. Marques da Silva J, Arrabaça MC (2004) Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiol Plant 121:409–420CrossRefGoogle Scholar
  65. Maury P, Mojayad F, Berger M, Planchon C (1996) Photochemical response to drought acclimation in two sunflower genotypes. Physiol Plant 98:57–66CrossRefGoogle Scholar
  66. Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205–214CrossRefGoogle Scholar
  67. Miyazawa S-I, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:553–564CrossRefGoogle Scholar
  68. Montanaro G, Dichio B, Xiloyannis C (2007) Response of photosynthetic machinery of field-grown kiwifruit under Mediterranean conditions during drought and re-watering. Photosynthetica 45:533–540CrossRefGoogle Scholar
  69. Munne-Bosch S, Alegre L (2002) Plant aging increases oxidative stress in chloroplasts. Planta 214:608–615PubMedCrossRefGoogle Scholar
  70. Munne-Bosch S, Mueller M, Schwarz K, Alegre L (2001) Diterpenes and antioxidative protection in drought-stressed Salvia officinalis plants. J Plant Physiol 158:1431–1437CrossRefGoogle Scholar
  71. Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839PubMedCrossRefGoogle Scholar
  72. Peeva V, Cornic G (2009) Leaf photosynthesis of Haberlea rhodopensis before and during drought. Environ Exp Bot 65:310–318CrossRefGoogle Scholar
  73. Perez-Martin A, Flexas J, Ribas-Carbo M, Bota J, Tomas M, Infante JM, Diaz-Espejo A (2009) Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot 60:2391–2405PubMedCrossRefGoogle Scholar
  74. Pérez-Pérez JG, Syvertsen JP, Botía P, García-Sánchez F (2007) Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery. Ann Bot 100:335–345PubMedCrossRefGoogle Scholar
  75. Pou A, Flexas J, Alsina MD, Bota J, Carambula C, de Herralde F, Galmés J, Lovisolo C, Jimenez M, Ribas-Carbo M, Rusjan D, Secchi F, Tomas M, Zsofi Z, Medrano H (2008) Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Physiol Plant 134:313–323PubMedCrossRefGoogle Scholar
  76. Resco V, Ewers BE, Sun W, Huxman TE, Weltzin JF, Williams DG (2009) Drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina. New Phytol 181:672–682PubMedCrossRefGoogle Scholar
  77. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Nat Acad Sci 104(49):19631–19636PubMedCrossRefGoogle Scholar
  78. Saccardy K, Cornic G, Brulfert J, Reyss A (1996) Effect of drought stress on net CO2 uptake by Zea leaves. Planta 199:589–595CrossRefGoogle Scholar
  79. Schwab KB, Schreiber U, Heber U (1989) Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration. Planta 177:217–227CrossRefGoogle Scholar
  80. Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219PubMedCrossRefGoogle Scholar
  81. Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302CrossRefGoogle Scholar
  82. de Souza RP, Machado EC, Silva JAB, Lagoa A, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56CrossRefGoogle Scholar
  83. de Souza CR, de Maroco JP, dos Santos TP, Rodrigues ML, Lopes CM, Pereira JS, Chaves MM (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric Ecosyst Environ 106:261–274CrossRefGoogle Scholar
  84. Tang AC, Kawamitsu Y, Kanechi M, Boyer JS (2002) Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Ann Bot 89:861–870PubMedCrossRefGoogle Scholar
  85. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917CrossRefGoogle Scholar
  86. Tezara W, Mitchell V, Driscoll SP, Lawlor DW (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791PubMedCrossRefGoogle Scholar
  87. Turner NC, Schulze E-D, Gollan T (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 65:348–355CrossRefGoogle Scholar
  88. Varone L, Ribas-Carbo M, Cardona C, Galle A, Hl Medrano, Gratani L, Flexas J (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: different response to water stress. Environ Exp Bot 75:235–247CrossRefGoogle Scholar
  89. Vincent D, Ergul A, Bohlman MC, Tattersall EAR, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892PubMedCrossRefGoogle Scholar
  90. Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450PubMedCrossRefGoogle Scholar
  91. Xu Z, Zhou G, Shimizu H (2009) Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J Exp Bot 60:3737–3749PubMedCrossRefGoogle Scholar
  92. Zhou YH, Lam HM, Zhang JH (2007a) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58:1207–1217PubMedCrossRefGoogle Scholar
  93. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Li Ma, Wang J, Xiong L, Zhang Q, Fan L, Deng X (2007b) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jaume Flexas
    • 1
  • Alexander Gallé
    • 1
  • Jeroni Galmés
    • 1
  • Miquel Ribas-Carbo
    • 1
  • Hipólito Medrano
    • 1
  1. 1.Universitat de les Illes Balears, Grup de Recerca en Biologia de les Plantes en Condicions MediterràniesPalma de MallorcaSpain

Personalised recommendations