Regulation of Root Water Uptake Under Drought Stress Conditions

  • Ricardo ArocaEmail author
  • Juan Manuel Ruiz-Lozano


Drought is one of the most stressful conditions limiting plant yield around the world. Most efforts have been made in studying how aerial parts contribute to plant drought tolerance, being the role of roots less investigated. However, there are studies where a correlation between root water uptake capacity under drought conditions and drought tolerance has been found. Root water uptake capacity depends on morphological, anatomical, and molecular features of roots. A correlation between investment in root biomass during drought and tolerance to drought is hard to establish fromthe literature data. A better correlation between drought tolerance and root length density has been found. However, the capacity of absorbing water varies along a given root. Also, apoplastic barriers develop under drought conditions, limiting root water transport to some extent. Here new findings that question this assumption are presented. Finally, the exact role of aquaporin in the regulation of root hydraulic properties under drought conditions is far from being understood. This lack of knowledge is mainly caused by the large number of aquaporin isoforms present in the genomes of plants (up to 70 in cotton). Subcellular localization and knockout studies for each kind of aquaporins are needed in order to clarify their role in the regulation of root water uptake under drought conditions.


Drought Stress Drought Tolerance Drought Condition Root Length Density Root Water Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favourable growth conditions but not under drought or salt stress. Plant Cell 15:439–447PubMedCrossRefGoogle Scholar
  2. Alguacil MM, Kohler J, Caravaca F, Roldán A (2009) Differential effects of Pseudomonas mendoica and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–951CrossRefGoogle Scholar
  3. Alsina MM, Smart DR, Bauerle T, de Herralde F, Biel C, Stockert C, Negron C, Savé R (2011) Seasonal changes of whole root conductance by a drought-tolerant grape root system. J Exp Bot 62:99–109PubMedCrossRefGoogle Scholar
  4. Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulagaris plants. Ann Bot 98:1301–1310PubMedCrossRefGoogle Scholar
  5. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816PubMedCrossRefGoogle Scholar
  6. Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041PubMedCrossRefGoogle Scholar
  7. Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:42–57CrossRefGoogle Scholar
  8. Azad AK, Katsuhara M, Sawa Y, Ishikawa T, Shibata H (2008) Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. Plant Cell Physiol 49:1196–1208PubMedCrossRefGoogle Scholar
  9. Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317PubMedCrossRefGoogle Scholar
  10. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805PubMedCrossRefGoogle Scholar
  11. Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218PubMedCrossRefGoogle Scholar
  12. Camposeo S, Rubino P (2003) Effect of irrigation frequency on root water uptake in sugar beet. Plant Soil 253:301–309CrossRefGoogle Scholar
  13. Cocozza C, Cherubini P, Reiger N, Saurer M, Frey B, Tognetti R (2010) Early effects of water deficit on two parental clones of Populus nigra grown under different environmental conditions. Funct Plant Biol 37:244–254CrossRefGoogle Scholar
  14. Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214PubMedCrossRefGoogle Scholar
  15. Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16PubMedCrossRefGoogle Scholar
  16. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  17. Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228PubMedCrossRefGoogle Scholar
  18. Gong DS, Xiong YC, Ma BL, Wang TM, Ge JP, Qin XL, Li PF, Kong HY, Li ZZ, Li FM (2010) Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat (Avena sativa L.) genotypes. Environ Exp Bot 69:1–8CrossRefGoogle Scholar
  19. Grzesiak S, Hura T, Grzesiak MT, Pienkowski S (1999) The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiol Plant 21:305–315CrossRefGoogle Scholar
  20. Hachez C, Veselov D, Ye Q, Reinhardt H, Knipfer T, Fricke W, Chaumont F (2012) Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ 35:185–198PubMedCrossRefGoogle Scholar
  21. Huang BR, Nobel PS (1992) Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root-growth and drought-induced abscission. J Exp Bot 43:1441–1449CrossRefGoogle Scholar
  22. Ionenko IF, Dautova NR, Anisimov AV (2012) Early changes of water diffusional transfer in maize roots under the influence of water stress. Environ Exp Bot 76:16–23CrossRefGoogle Scholar
  23. Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007a) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632PubMedCrossRefGoogle Scholar
  24. Jang JY, Rhee JY, Kim DG, Chung GC, Lee JH, Kang H (2007b) Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. Plant Cell Physiol 48:1331–1339PubMedCrossRefGoogle Scholar
  25. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522PubMedCrossRefGoogle Scholar
  26. Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2011) Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crop Res 120:262–270CrossRefGoogle Scholar
  27. Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crop Res 115:279–286CrossRefGoogle Scholar
  28. Knipfer T, Fricke W (2010) Root pressure and solute reflection coefficient close to unit exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytol 187:159–170PubMedCrossRefGoogle Scholar
  29. Knipfer T, Besse M, Verdeil JL, Fricke W (2011) Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots. J Exp Bot 62:4115–4126PubMedCrossRefGoogle Scholar
  30. Kondo M, Murty MVR, Aragones DV (2000) Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Sci Plant Nutr 46:721–732CrossRefGoogle Scholar
  31. Li C (1998) Variation of seedling traits of Eucalyptus microtheca origins in different water regimes. Silvae Genetica 47:132–136Google Scholar
  32. Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888PubMedCrossRefGoogle Scholar
  33. Li XJ, Wang XH, Yang Y, Li RL, He QH, Fang XH, Luu DT, Maurel C, Lin XJ (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797PubMedCrossRefGoogle Scholar
  34. Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489PubMedCrossRefGoogle Scholar
  35. Limousin JM, Longepierre D, Huc R, Rambal S (2010) Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term through fall exclusion. Tree Physiol 30:1026–1036PubMedCrossRefGoogle Scholar
  36. Liste HH, White JC (2008) Plant hydraulic lift of soil water: implications for crop production and land restoration. Plant Soil 313:1–17CrossRefGoogle Scholar
  37. Liu ZM, Thompson K, Spencer RE, Reader RJ (2000) A comparative study of morphological responses of seedling roots to drying soil in 20 species from different habitats. Acta Bot Sin 42:628–635Google Scholar
  38. Lo Gullo MA, Nardini A, Salleo S, Tyree MT (1998) Changes in root hydraulic conductance (K-R) of Olea oleaster seedlings following drought stress and irrigation. New Phytol 140:25–31CrossRefGoogle Scholar
  39. Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F, Sakr S, Label P, Julien JL, Gousset-Dupont A, Venisse JS (2012) Insight into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63:2217–2230PubMedCrossRefGoogle Scholar
  40. Luu DT, Martiniere A, Sorieul M, Runions J, Maurel C (2012) Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. Plant J 69:894–905PubMedCrossRefGoogle Scholar
  41. Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49:801–813PubMedCrossRefGoogle Scholar
  42. Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29CrossRefGoogle Scholar
  43. Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae: a review. Plant Ecol 171:3–13CrossRefGoogle Scholar
  44. Matsui T, Singh BB (2003) Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agric 39:29–38CrossRefGoogle Scholar
  45. Matsuo N, Ozawa K, Mochizuki T (2009) Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes. Plant Soil 316:25–34CrossRefGoogle Scholar
  46. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624PubMedCrossRefGoogle Scholar
  47. McLean EH, Ludwig M, Grierson PF (2011) Root hydraulic conductance and aquaporin abundance respond rapidly to partial root-zone drying events in a riparian Melaleuca species. New Phytol 192:664–675PubMedCrossRefGoogle Scholar
  48. McMichael BL, Quisenberry JE (1991) Genetic variation for root-shoot relationships among cotton germplasm. Environ Exp Bot 31:461–470CrossRefGoogle Scholar
  49. Meyer CJ, Peterson CA, Steudle E (2011) Permeability of Iris germanica’s multiseriate exodermis to water, NaCl, and ethanol. J Exp Bot 62:1911–1926PubMedCrossRefGoogle Scholar
  50. Newmann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modelling studies. New Phytol 194:337–352CrossRefGoogle Scholar
  51. North GB, Baker EA (2007) Water uptake by older roots: Evidence from desert succulents. HortScience 42:1103–1106Google Scholar
  52. North GB, Nobel PS (1991) Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceace). Am J Bot 78:906–915CrossRefGoogle Scholar
  53. North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120:9–19CrossRefGoogle Scholar
  54. North GB, Nobel PS (1998) Water uptake and structural plasticity along roots of a desert succulent during prolonged drought. Plant Cell Environ 21:705–713CrossRefGoogle Scholar
  55. North GB, Nobel PS (2000) Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent. Ann Bot 85:247–255CrossRefGoogle Scholar
  56. Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363PubMedCrossRefGoogle Scholar
  57. Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belasategui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A, Siegfart S, Urban M, Kaldenhoff R (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285:31253–31260PubMedCrossRefGoogle Scholar
  58. Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:142PubMedCrossRefGoogle Scholar
  59. Peng YH, Lin WL, Cai WM, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740PubMedCrossRefGoogle Scholar
  60. Porcel R, Aroza R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404PubMedCrossRefGoogle Scholar
  61. Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schaffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physol 152:1418–1430CrossRefGoogle Scholar
  62. Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974PubMedCrossRefGoogle Scholar
  63. Ranathunge K, Lin JX, Steudle E, Schreiber L (2011) Stagnat deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ 34:1223–1240PubMedCrossRefGoogle Scholar
  64. Ruiz-Lozano JM, Alguacil MM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579PubMedCrossRefGoogle Scholar
  65. Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553PubMedCrossRefGoogle Scholar
  66. Sekiya N, Yano K (2004) Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift? Hydrogen stable isotope investigation of xylem waters. Field Crop Res 86:167–173CrossRefGoogle Scholar
  67. Silva FCE, Shaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globules clones differing in drought tolerance. Tree Physiol 24:1165–1172CrossRefGoogle Scholar
  68. Spaeth SC, Cortes PM (1995) Root cortex death and subsequent initiation and growth of lateral roots from bare steles of chickpeas. Can J Bot 73:253–261CrossRefGoogle Scholar
  69. Stasovski E, Peterson CA (1993) Effects of drought and subsequent rehydration on the structure, vitality, and permeability of Allium cepa adventitious roots. Can J Bot 71:700–707CrossRefGoogle Scholar
  70. Steudle E (2000) Water uptake by root: effects of water deficit. J Exp Bot 51:1531–1542PubMedCrossRefGoogle Scholar
  71. Steudle E, Peterson CA (1998) How does water gets through roots? J Exp Bot 49:775–788Google Scholar
  72. Taleisnik E, Peyrano G, Cordoba A, Arias C (1999) Water retention capacity in root segments differing in the degree of exodermis development. Ann Bot 83:19–27CrossRefGoogle Scholar
  73. Trifilo P, Raimondo F, Nardini A, Lo Gullo MA, Salleo S (2004) Drought resistance of Ailanthus altissima: root hydraulics and water relations. Tree Physiol 24:107–114PubMedCrossRefGoogle Scholar
  74. Tyree MT, Ewers FW (1991) The hydraulic architecture of tress and other woody-plants. New Phytol 119:345–360CrossRefGoogle Scholar
  75. Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460PubMedCrossRefGoogle Scholar
  76. Wan CG, Xu WW, Sosebee RE, Machado S, Archer T (2000) Hydraulic lift in drought-tolerant and -susceptible maize hybrids. Plant Soil 219:117–126CrossRefGoogle Scholar
  77. Wang HF, Zhang JH, Liang JH, Yin WL (1999) Root and xylem ABA changes in response to soil drying in two woody plants. Chin Sci Bull 44:2236–2241CrossRefGoogle Scholar
  78. Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168:1241–1248PubMedCrossRefGoogle Scholar
  79. Wikbergi J, Ogreni E (2007) Variation in drought resistance, drought acclimation and water conservation in four willow cultivars used for biomass production. Tree Physiol 27:1339–1346CrossRefGoogle Scholar
  80. Wu YJ, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553PubMedCrossRefGoogle Scholar
  81. Yang X, Li Y, Ren B, Ding L, Gao C, Shen Q, Guo S (2012) Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant Cell Physiol 53:495–504PubMedCrossRefGoogle Scholar
  82. Yu QJ, Hu YL, Li JF, Wu Q, Lin ZP (2005) Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought tolerance. Plant Sci 169:647–656CrossRefGoogle Scholar
  83. Zegada-Lizarazu W, Iijima M (2004) Hydrogen stable isotope analysis of water acquisition ability of deep roots and hydraulic lift in sixteen food crop species. Plant Prod Sci 7:427–434CrossRefGoogle Scholar
  84. Zhang Y, Wang YX, Jiang LD, Xu Y, wang YC, Lu DH, Chan F (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39:787–794PubMedCrossRefGoogle Scholar
  85. Zhang YX, Wang Z, Chai TY, Wen ZS, Zhang HM (2008) Indian mustard aquaporin improves drought and heavy-metal resistance in tobacco. Mol Biotechnol 40:280–292PubMedCrossRefGoogle Scholar
  86. Zhao CX, Deng XP, Zhang SQ, Ye Q, Steudle E, Shan L (2004) Advances in the studies on water uptake by plant roots. Acta Bot Sin 46:505–514Google Scholar
  87. Zhu JM, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749PubMedGoogle Scholar
  88. Zollinger N, Kjelgren R, Cerny-Koenig T, Kopp K, Koenig R (2006) Drought responses of six ornamental herbaceous perennials. Sci Hortic 109:267–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín (CSIC)GranadaSpain

Personalised recommendations