Contribution of Arbuscular Mycorrhizal Symbiosis to Plant Drought Tolerance: State of the Art

  • JM Ruiz-LozanoEmail author
  • R. Porcel
  • G. Bárzana
  • R. Azcón
  • R. Aroca


Water deficit is considered one of the most important abiotic constraints limiting plant growth and yield in many areas on the Earth. Indeed, it accounts for over 70 % of yield losses during crop production. Several eco-physiological studies have demonstrated that the arbuscular mycorrhizal (AM) symbiosis improves plant tissue hydration and physiology under drought stress conditions. It is currently accepted that the contribution of AM symbiosis to plant drought tolerance is the result of accumulative physical, nutritional, physiological, and cellular effects. This chapter summarizes, from physiological and molecular points of view, the current knowledge about the mechanisms by which the AM symbiosis is thought to protect host plants against the detrimental effects of water deficit. Thus, the role of fungal hyphae in water uptake and transfer to plant tissues and in modification of soil water retention properties is updated. At the same time, the implication of plant aquaporins in regulation of root hydraulic properties is discussed. The influence of the AM symbiosis on host plant processes such as osmotic adjustment, gas exchange, hormonal balance, and antioxidant capacity is also reviewed.


Drought Stress Arbuscular Mycorrhizal Osmotic Adjustment Mycorrhizal Plant Drought Stress Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of a MICINN-FEDER project (Project AGL2008-00898).


  1. Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372PubMedCrossRefGoogle Scholar
  2. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporins in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress. Plant Cell 15:439–447PubMedCrossRefGoogle Scholar
  3. Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoot from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570CrossRefGoogle Scholar
  4. Alguacil MM, Caravaca F, Díaz-Vivancos P, Hernández JA, Roldán A (2006) Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant Soil 279:209–218CrossRefGoogle Scholar
  5. Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis Lag ex Steud. New Phytol 91:191–196CrossRefGoogle Scholar
  6. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, CambridgeGoogle Scholar
  7. Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297CrossRefGoogle Scholar
  8. Allen MF, Moore TS, Christensen M (1982) Phytohormone changes Bouteloua gracilis infected by vesicular-arbuscular mycorrhizal fungi. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471CrossRefGoogle Scholar
  9. Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savoure A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450PubMedCrossRefGoogle Scholar
  10. Aroca R (2006) Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants. J Plant Growth Reg 25:10–17CrossRefGoogle Scholar
  11. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporin in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816PubMedCrossRefGoogle Scholar
  12. Aroca R, Alguacil M, Vernieri P, Ruiz-Lozano JM (2008a) Plant responses to drought stress and exogenous ABA application are differently modulated by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microb Ecol 56:704–719PubMedCrossRefGoogle Scholar
  13. Aroca R, Vernieri P, Ruiz-Lozano JM (2008b) Mycorrhyzal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041PubMedCrossRefGoogle Scholar
  14. Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant-Microbe Interact 22:1169–1178PubMedCrossRefGoogle Scholar
  15. Aroca R, Porcel R, Ruiz-Lozano JM (2011) Plant drought tolerance enhancement by arbuscular mycorrhizal symbiosis. In: Fulton SM (ed) Mycorrhizal Fungi. Nova Science Publishers lnc, New York, pp 229–240Google Scholar
  16. Augé RM (2000) Stomatal behaviour of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 201–237Google Scholar
  17. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  18. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381CrossRefGoogle Scholar
  19. Augé RM, Scheckel KA, Wample RL (1986) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol 103:107–116CrossRefGoogle Scholar
  20. Augé RM, Stodola AJW, Brown MS, Bethlenfalvay GJ (1992) Stomatal responses of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol 120:117–125CrossRefGoogle Scholar
  21. Augé RM, Duan X, Ebel RC, Stodola AJ (1994) Nonhydraulic signaling of soil drying in mycorrhizal maize. Planta 193:74–82CrossRefGoogle Scholar
  22. Augé RM, Stodola AJ, Ebel RC, Duan XR (1995) Leaf elongation and water relations of mycorrhizal sorghum in response to partial soil drying: two Glomus species at varying phosphorus fertilization. J Exp Bot 46:297–307CrossRefGoogle Scholar
  23. Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97CrossRefGoogle Scholar
  24. Augé RM, Sylvia DM, Park SJ, Buttery BR, Saxton AM, Moore JL, Cho K (2004) Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Can J Bot 82:503–514CrossRefGoogle Scholar
  25. Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164:1289–1299PubMedCrossRefGoogle Scholar
  26. Augé RM, Toler HD, Sams CE, Nasim G (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115–121PubMedCrossRefGoogle Scholar
  27. Barea JM, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil-plant systems. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 521–561Google Scholar
  28. Barrieu F, Marty-Mazars D, Thomas D, Chaumont F, Charbonnier M, Marty F (1999) Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells. Planta 209:77–86PubMedCrossRefGoogle Scholar
  29. Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trends Plant Sci 6:284–286PubMedCrossRefGoogle Scholar
  30. Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359PubMedCrossRefGoogle Scholar
  31. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalinrelated soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496CrossRefGoogle Scholar
  32. Bheemareddy VS, Lakshman HC (2011) Effect of AM fungus Glomus fasciculatum on metabolite accumulation in four varieties of Triticum aestivum L. under short-term water stress. Vegetos 24:41–49Google Scholar
  33. Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272PubMedGoogle Scholar
  34. Bienert GP, Désirée-Bienert M, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317PubMedCrossRefGoogle Scholar
  35. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedGoogle Scholar
  36. Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341PubMedCrossRefGoogle Scholar
  37. Caravaca F, Díaz E, Barea JM, Azcón-Aguilar C, Roldán A (2003) Photosynthetic and transpiration rates of Olea europaea subsp. sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza. Biol Plant 46:637–639CrossRefGoogle Scholar
  38. Caravaca F, Alguacil MM, Hernández JA, Roldán A (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169:191–197CrossRefGoogle Scholar
  39. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215PubMedCrossRefGoogle Scholar
  40. Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balance in maize (Zea mays L.). J Plant Physiol 141:33–39CrossRefGoogle Scholar
  41. Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23:547–552PubMedCrossRefGoogle Scholar
  42. Druge U, Schonbeck F (1992) Effect of vesicular arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141:40–48CrossRefGoogle Scholar
  43. Duan X, Newman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550CrossRefGoogle Scholar
  44. Ebel RC, Duan X, Still DW, Augé RM (1997) Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol 135:755–761CrossRefGoogle Scholar
  45. Esch H, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16CrossRefGoogle Scholar
  46. Estrada-Luna A, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083PubMedCrossRefGoogle Scholar
  47. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedCrossRefGoogle Scholar
  48. Faber BA, Zasoski RJ, Munns DN (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94CrossRefGoogle Scholar
  49. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  50. Fester T, Hause B (2007) Drought and symbiosis-why is abscisic acid necessary for arbuscular mycorrhiza? New Phytol 175:383–386PubMedCrossRefGoogle Scholar
  51. George E, Häuser KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137CrossRefGoogle Scholar
  52. Ginter E (2007) Chronic vitamin C deficiency increases the risk of cardiovascular diseases. Bratislava Med J 108:417–421Google Scholar
  53. Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997CrossRefGoogle Scholar
  54. Goicoechea N, Szalai G, Antolín MC, Sánchez-Díaz M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706–711CrossRefGoogle Scholar
  55. Goicoechea N, Merino S, Sánchez-Díaz M (2004) Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub Anthyllis cytisoides under water deficit. Physiol Plant 122:453–464CrossRefGoogle Scholar
  56. Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034PubMedCrossRefGoogle Scholar
  57. Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134PubMedCrossRefGoogle Scholar
  58. Hallet PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314:183–196CrossRefGoogle Scholar
  59. Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol 101:677–684CrossRefGoogle Scholar
  60. Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110PubMedCrossRefGoogle Scholar
  61. He X, Gao L, Zhao L (2011) Effects of AM fungi on the growth and drought resistance of Seriphidium minchiinense under water stress. Acta Ecol Sinica 31:1029–1037Google Scholar
  62. Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo JA, García-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. New Phytol 175:554–564PubMedCrossRefGoogle Scholar
  63. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351PubMedCrossRefGoogle Scholar
  64. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438PubMedCrossRefGoogle Scholar
  65. Hu CA, Delaunew AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358PubMedCrossRefGoogle Scholar
  66. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol 55:45–53CrossRefGoogle Scholar
  67. Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725PubMedCrossRefGoogle Scholar
  68. Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632PubMedCrossRefGoogle Scholar
  69. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313PubMedCrossRefGoogle Scholar
  70. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369PubMedCrossRefGoogle Scholar
  71. Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712Google Scholar
  72. Khan IA, Ayub N, Mirza SN, Nizami SN, Azam M (2008) Yield and water use efficiency (WUE) of Cenchrus ciliaris as influenced by vesicular arbuscular mycorrhizae (VAM). Pak J Bot 40:931–937Google Scholar
  73. Kishor PB, Hong Z, Miao GH, Hu CA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxilate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedGoogle Scholar
  74. Koide R (1993) Physiology of the mycorrhizal plant. Adv Plant Pathol 9:33–54Google Scholar
  75. Krajinski F, Biela A, Schubert D, Gianinazzi-Pearson V, Kaldenhoff R, Franken P (2000) Arbuscular mycorrhiza development regulates the mRNA abundance of Mtaqp1 encoding a mercury-insensitive aquaporin of Medicago truncatula. Planta 211:85–90PubMedCrossRefGoogle Scholar
  76. Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206PubMedCrossRefGoogle Scholar
  77. Kubikova E, Moore JL, Ownlew BH, Mullen MD, Augé RM (2001) Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode. J Plant Physiol 158:1227–1230CrossRefGoogle Scholar
  78. Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90PubMedCrossRefGoogle Scholar
  79. López-Raez JA, Pozo MJ, García-Garrido JM (2011) Strigolactones: a cry for help in the rhizosphere. Botany 89:513–522CrossRefGoogle Scholar
  80. Loreto F, Centritto M (2008) Leaf carbon assimilation in a water-limited world. Plant Biosyst 142:154–161CrossRefGoogle Scholar
  81. Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Kapulnik Y, Koltai H (eds) Arbuscular mycorrhizas: physiology and function. Springer, Berlin, pp 169–190CrossRefGoogle Scholar
  82. Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiβ M, Hampp R, Nehls U (2005) Aquaporins in poplar: what a difference a simbiont makes! Planta 222:258–268PubMedCrossRefGoogle Scholar
  83. Martín-Rodríguez JA, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205CrossRefGoogle Scholar
  84. Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa L. plants under drought stress. Physiol Plant 119:526–533CrossRefGoogle Scholar
  85. Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552PubMedCrossRefGoogle Scholar
  86. Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236PubMedCrossRefGoogle Scholar
  87. Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715PubMedCrossRefGoogle Scholar
  88. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefGoogle Scholar
  89. Morgan JM (1984) Osmoregulation and water stress in higher plants. An Rev Plant Physiol 33:299–319CrossRefGoogle Scholar
  90. Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216CrossRefGoogle Scholar
  91. Munné-Bosch S, Nogués S, Alegre L (1998) Daily patterns of photosynthesis of two Mediterranean Shrubs response to water deficit. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 4015–4018Google Scholar
  92. Murakami-Mizukami Y, Yamamoto Y, Yamaki S (1991) Analyses of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA mycorrhizas. Soil Sci Plant Nut 37:291–298CrossRefGoogle Scholar
  93. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefGoogle Scholar
  94. Osundina M (1995) Responses of seedlings of Parkia biglobes (African locust bean) to drought and inoculation with vesicular-arbuscular mycorrhiza. Nigerian J Bot 8:1–10Google Scholar
  95. Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172PubMedCrossRefGoogle Scholar
  96. Palma JM, Longa MA, del Rio LA, Arines J (1993) Superoxide dismutase in vesicular-arbuscular red clover plants. Physiol Plant 87:77–83CrossRefGoogle Scholar
  97. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750PubMedCrossRefGoogle Scholar
  98. Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143CrossRefGoogle Scholar
  99. Porcel R, Azcón R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65:211–221CrossRefGoogle Scholar
  100. Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404PubMedCrossRefGoogle Scholar
  101. Querejeta JI, Barea JM, Allen MF, Caravaca F, Roldan A (2003) Differential response of delta 13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510–515PubMedGoogle Scholar
  102. Querejeta JI, Allen MF, Caravaca F, Roldán A (2006) Differential modulation of host plant δ13C and δ18O by native and nonnative arbuscular mycorrhiazl fungi in semiarid environment. New Phytol 169:379–387PubMedCrossRefGoogle Scholar
  103. Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  104. Rincon A, Priha O, Lelu-Walter MA, Bonnet M, Sotta B, Le Tacon F (2005) Shoot water status and ABA responses of transgenic hybrid larch Larix kaempferi X L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiol 25:1101–1108PubMedCrossRefGoogle Scholar
  105. Roussel H, Bruns S, Gianinazzi-Pearson V, Hahlbrock K, Franken P (1997) Induction of a membrane intrinsic protein-encoding mRNA in arbuscular mycorrhiza and elicitor-stimulated cell suspension cultures of parsley. Plant Sci 126:203–210CrossRefGoogle Scholar
  106. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New Perspectives Molecular Stud Mycorrhiza 13:309–317Google Scholar
  107. Ruiz-Lozano JM, Aroca R (2010a) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, Grube M (eds) Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer, Berlin, pp 359–374Google Scholar
  108. Ruiz-Lozano JM, Aroca R (2010b) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer, Berlin, pp 239–256CrossRefGoogle Scholar
  109. Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478CrossRefGoogle Scholar
  110. Ruiz-Lozano JM, Azcón R (1997) Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis 23:9–22Google Scholar
  111. Ruiz-Lozano JM, Azcón R, Gómez M (1995) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460PubMedGoogle Scholar
  112. Ruiz-Lozano JM, Azcón R, Gómez M (1996a) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772CrossRefGoogle Scholar
  113. Ruiz-Lozano J, Azcón R, Palma JM (1996b) Superoxide dismutase activity in arbuscular-mycorrhizal Lactuca sativa L. plants subjected to drought stress. New Phytol 134:327–333CrossRefGoogle Scholar
  114. Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001a) Clonig of cDNAs enconding SODs from lettuce plants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242PubMedGoogle Scholar
  115. Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001b) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502CrossRefGoogle Scholar
  116. Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693–698PubMedCrossRefGoogle Scholar
  117. Ruiz-Lozano JM, Alguacil MM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579PubMedCrossRefGoogle Scholar
  118. Ruiz-Lozano JM, Perálvarez MC, Aroca R, Azcón R (2011) The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress. Plant Soil 346:153–166CrossRefGoogle Scholar
  119. Ruíz-Sánchez M, Aroca R, Munoz Y, Polon R, Ruíz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869PubMedCrossRefGoogle Scholar
  120. Ruíz-Sánchez M, Armada E, Munoz Y, García de Salamone I, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhanced rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037PubMedCrossRefGoogle Scholar
  121. Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil 342:459–468CrossRefGoogle Scholar
  122. Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682PubMedCrossRefGoogle Scholar
  123. Scheibe R, Beck E (2011) Drought, desiccation, and oxidative stress. In: Lüttge U et al (eds) Plant desiccation tolerance, ecological studies 215. Springer, Berlin, pp 209–231CrossRefGoogle Scholar
  124. Schellembaum J, Muller J, Boller T, Wiemken A, Schuepp H (1998) Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in pools of non-structural carbohydrates, in the activities of invertase and trehelase, and in the pools of amino acids and imino acids. New Phytol 138:59–66CrossRefGoogle Scholar
  125. Schraut D, Heilmeier H, Hartung W (2005) Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J Exp Bot 56:879–886PubMedCrossRefGoogle Scholar
  126. Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430PubMedCrossRefGoogle Scholar
  127. Singh DK, Sale PWG, Pallaghy CK, Singh V (2000) Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. New Phytol 146:261–269CrossRefGoogle Scholar
  128. Singh LP, Gill SG, Tuteja N (2011) Unravelling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191PubMedCrossRefGoogle Scholar
  129. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  130. Steiger HM, Beck E (1981) Formation of hydrogen peroxide and oxygen dependence of photosynthetic CO2 assimilation by intact chloroplasts. Plant Cell Physiol 22:561–576Google Scholar
  131. Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Hortic 107:245–253CrossRefGoogle Scholar
  132. Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:123–231Google Scholar
  133. Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129PubMedCrossRefGoogle Scholar
  134. Varma A (2008) Mycorrhiza. State of the art, genetics and molecular biology, eco-funcion, biotecnology, eco-physiology, structure and systematics, 3rd edn. Springer, BerlinGoogle Scholar
  135. Wang B, Yeun LH, Liu Y, Xue JY, Ane JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525PubMedCrossRefGoogle Scholar
  136. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210PubMedCrossRefGoogle Scholar
  137. Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425PubMedCrossRefGoogle Scholar
  138. Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55:436–442Google Scholar
  139. Wu QS, Xia RX, Zou YN (2006a) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliate) seedlings subjected to water stress. J Plant Physiol 163:1101–1110PubMedCrossRefGoogle Scholar
  140. Wu QS, Zou YN, Xia RX (2006b) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172CrossRefGoogle Scholar
  141. Wu QS, Xia RX, Zou YN, Wang GY (2007) Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiol Plant 29:543–549CrossRefGoogle Scholar
  142. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760PubMedCrossRefGoogle Scholar
  143. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119CrossRefGoogle Scholar
  144. Zhao C-X, Shao H-B, Chu L-Y (2008) Aquaporin structure-function relationships: water flow through plant living cells. Col Surf B 62:163–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • JM Ruiz-Lozano
    • 1
    Email author
  • R. Porcel
    • 1
  • G. Bárzana
    • 1
  • R. Azcón
    • 1
  • R. Aroca
    • 1
  1. 1.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín (CSIC)GranadaSpain

Personalised recommendations