Bare Bones Particle Swarms with Jumps

  • Mohammad Majid al-Rifaie
  • Tim Blackwell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7461)

Abstract

Bare Bones PSO was proposed by Kennedy as a model of PSO dynamics. Dependence on velocity is replaced by sampling from a Gaussian distribution. Although Kennedy’s original formulation is not competitive to standard PSO, the addition of a component-wise jumping mechanism, and a tuning of the standard deviation, can produce a comparable optimisation algorithm. This algorithm, Bare Bones with Jumps, exists in a variety of formulations. Two particular models are empirically examined in this paper and comparisons are made to canonical PSO and standard Bare Bones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in amultidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  2. 2.
    Yang, Y., Kamel, M.: Clustering ensemble using swarm intelligence. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 65–71. IEEE (2003)Google Scholar
  3. 3.
    van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Information Sciences 176(8), 937–971 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kennedy, J.: Bare bones particle swarms. In: Proceedings of Swarm Intelligence Symposium (SIS 2003), pp. 80–87. IEEE (2003)Google Scholar
  5. 5.
    Blackwell, T.: A study of collapse in bare bones particle swarm optimisation. IEEE Transactions on Evolutionary Computing (99) (2012)Google Scholar
  6. 6.
    Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley (2006)Google Scholar
  8. 8.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA (1975)Google Scholar
  10. 10.
    al-Rifaie, M.M., Bishop, M., Blackwell, T.: Resource allocation and dispensation impact of stochastic diffusion search on differential evolution algorithm. In: Nature Inspired Cooperative Strategies for Optimisation (NICSO 2011). Springer (2011)Google Scholar
  11. 11.
    Gehlhaar, D., Fogel, D.: Tuning evolutionary programming for conformationally flexible molecular docking. In: Evolutionary Programming V: Proc. of the Fifth Annual Conference on Evolutionary Programming, pp. 419–429 (1996)Google Scholar
  12. 12.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proc. of the Swarm Intelligence Symposium, Honolulu, Hawaii, USA, pp. 120–127. IEEE (2007)Google Scholar
  13. 13.
    Clerc, M.: From theory to practice in particle swarm optimization. In: Handbook of Swarm Intelligence, pp. 3–36 (2010)Google Scholar
  14. 14.
    Richer, T., Blackwell, T.: The lévy particle swarm. In: IEEE Congress on Evolutionary Computation, pp. 3150–3157 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Majid al-Rifaie
    • 1
  • Tim Blackwell
    • 1
  1. 1.GoldsmithsUniversity of LondonLondonUK

Personalised recommendations