Advertisement

Collision-Induced “Priority Rule” Governs Efficiency of Pheromone-Communicating Swarm Robots

  • Ryusuke Fujisawa
  • Shigeto Dobata
  • Yuuta Sasaki
  • Riku Takisawa
  • Fumitoshi Matsuno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7461)

Abstract

The recruiting system in foraging ant colonies is a typical example of swarm intelligence. The system is underpinned by the use of volatile pheromones which form a trail connecting from nest to food. We have incorporated this property into the behavior of the swarm of real robots. Because the trail is narrow, avoiding overcrowding on the trail, as well as in the environment, is a critical issue in maintaining efficiency of the swarm behavior. In this paper, we studied how “priority rule,h a behavioral rule under which a robot is given priority over the other robot in collision, affect the group-foraging performance of pheromone-mediated swarm robots. Using real robot experiments, we found that the alteration in the priority rules can have substantial effects on the group-foraging performance. Our results highlight the importance of implementing “fine-tuningh algorithms to improve the performance of complex swarm systems.

Keywords

Swarm Intelligence Priority Rule Pheromone Trail Swarm Size Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fujisawa, R., Imamura, H., Hashimoto, T., Matsuno, F.: Communication using pheromone field for multiple robots. In: Proc. IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems (2008)Google Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University Press (1999)Google Scholar
  3. 3.
    Hölldobler, B., Wilson, E.: The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company (2009)Google Scholar
  4. 4.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books (2004)Google Scholar
  5. 5.
    Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 3074–3079 (2004)Google Scholar
  6. 6.
    Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone land: An experimental setup for the study of ant-like robots. In: Proc. IEEE Swarm Intelligence Symposium (SIS 2007), April 1-5, pp. 37–44 (2007)Google Scholar
  7. 7.
    Shimoyama, I., Kanzaki, R.: Biological type micromachine. Journal of Society of Biomechanisms 22, 152–157 (1998) (in Japanese)Google Scholar
  8. 8.
    Purnamadjaja, A.H., Russell, R.A.: Guiding robots behaviors using pheromone communication. Autonomous Robots 23, 113–130 (2007)CrossRefGoogle Scholar
  9. 9.
    Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., Matsuno, F.: Dependency by Concentration of Pheromone Trail for Multiple Robots. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 283–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Krieger, M., Billeter, J., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406, 992–995 (2000)CrossRefGoogle Scholar
  11. 11.
    Chang, D., Shadden, S., Marsden, J., Olfati-Saber, R.: Collision avoidance for multiple agent systems. In: Proceedings of 42nd IEEE Conference on Decision and Control, 2003, vol. 1, pp. 539–543. IEEE (2003)Google Scholar
  12. 12.
    Burd, M., Archer, D., Aranwela, N., Stradling, D.: Traffic dynamics of the leaf-cutting ant, atta cephalotes. The American Naturalist 159, 283–293 (2002)CrossRefGoogle Scholar
  13. 13.
    Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.: Optimal traffic organization in ants under crowded conditions. Nature 428, 70–73 (2004)CrossRefGoogle Scholar
  14. 14.
    Dussutour, A., Beshers, S., Deneubourg, J., Fourcassié, V.: Priority rules govern the organization of traffic on foraging trails under crowding conditions in the leaf-cutting ant atta colombica. Journal of Experimental Biology 212, 499–505 (2009)CrossRefGoogle Scholar
  15. 15.
    Fujisawa, R., Shimizu, Y., Matsuno, F.: Effectiveness of tuning of pheromone trail lifetime in attraction of robot swarm. In: Proc. on International Symposium on System Integration, SII 2011, D2–2 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ryusuke Fujisawa
    • 1
  • Shigeto Dobata
    • 2
  • Yuuta Sasaki
    • 1
  • Riku Takisawa
    • 1
  • Fumitoshi Matsuno
    • 3
  1. 1.Hachinohe Institute of TechnologyAomoriJapan
  2. 2.University of the RyukyusOkinawaJapan
  3. 3.Kyoto UniversityKyotoJapan

Personalised recommendations