Advertisement

Scalability Study of Particle Swarm Optimizers in Dynamic Environments

  • Barend J. Leonard
  • Andries P. Engelbrecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7461)

Abstract

This study investigates the scalability of three particle swarm optimizers (PSO) on dynamic environments. The charged PSO (CPSO), quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algorithms are evaluated on a number of DF1 and moving peaks benchmark (MPB) environments that differ with respect to the severity and frequency of change. It is shown that dHPSO scales better to high severity and high frequency DF1 environments. For MPB environments, similar scalability results are observed, with dHPSO obtaining the best average results over all test cases. The good performance of dHPSO is ascribed to its ability to explore and exploit the search space more efficiently than CPSO and QPSO.

Keywords

Particle Swarm Optimization Particle Swarm Dynamic Environment Particle Swarm Optimization Algorithm Neutral Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackwell, T.: Particle swarms and population diversity. Soft Computing – A Fusion of Foundations, Methodologies and Applications 9(11), 793–802 (2005)zbMATHGoogle Scholar
  2. 2.
    Blackwell, T., Bentley, P.: Dynamic search with charged swarms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 19–26 (2002)Google Scholar
  3. 3.
    Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)CrossRefGoogle Scholar
  5. 5.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3. IEEE (1999)Google Scholar
  6. 6.
    Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 94–100. IEEE (2001)Google Scholar
  7. 7.
    Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–87. IEEE (2003)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  10. 10.
    Leonard, B., Engelbrecht, A., van Wyk, A.: Heterogeneous particle swarms in dynamic environments. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 1–8. IEEE (2011)Google Scholar
  11. 11.
    Morrison, R., De Jong, K.: A test problem generator for non-stationary environments. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, IEEE (1999)Google Scholar
  12. 12.
    Morrison, R.: Performance measurement in dynamic environments. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 5–8 (2003)Google Scholar
  13. 13.
    Pamparà, G., Engelbrecht, A., Cloete, T.: Cilib: A collaborative framework for computational intelligence algorithms – part i. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1750–1757. IEEE (2008)Google Scholar
  14. 14.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barend J. Leonard
    • 1
  • Andries P. Engelbrecht
    • 1
  1. 1.Department of Computer ScienceUniversity of PretoriaSouth Africa

Personalised recommendations