Color on the Biological and Biochemical Front

Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

One of the many things that the German dye companies excelled at was seeing the long-range and global picture and acting upon it. They went very large-scale on virtually every front, utilizing all the weapons that science and technology had to offer. They found that doing so enabled them to synthesize two important natural colorants, indigo and alizarin, thus eliminating the industry’s dependence on natural products and imports—the dye industry could now not only be self-sufficient, but could use the know-how generated in these key syntheses to make many other derivatives. In addition to setting up large laboratories that employed hundreds of chemists, they built libraries that had subscriptions to virtually every scholarly science journal in the Western world, they established dedicated bureaus to patent discoveries, and they virtually “wrote the book” on abstracting services by having these offices work around the clock and not only in the area of chemistry, but in every other domain that might afford them related knowledge—biology, the emerging area of biochemistry, pharmaceuticals, photography, and explosives.

Keywords

Methylene Blue Nobel Prize Indoor Residual Spraying Arsenic Compound Magic Bullet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McGrayne SB (2001) Prometheans in the lab: chemistry and the making of the modern world. McGraw-Hill, New York, pp 27–28Google Scholar
  2. 2.
    Chevreul ME (1830) Leçons de chimie appliquée à la teinture, vol 2. Pichon et Didier, Paris, pp 66–76Google Scholar
  3. 3.
    Schweppe H (1997) Indigo and woad. In: Fitzhugh EW (ed) Artists’ pigments: a handbook of their history and characteristics. The National Gallery of Art, Washington, DC and Oxford University Press, New York, pp 80–107. As of 2011, 50,000 tons of indigo are produced each year, 95% of which is used to dye the cotton yarn that will eventually become “blue jeans.”Google Scholar
  4. 4.
    Fruton JS (1972) Molecules and life: historical essays on the interplay of chemistry and biology. Wiley, New York, p 279Google Scholar
  5. 5.
    Brett RH, Bird G (1835) On the action of acids on the blood productive of certain new substances. Lond Med Gazette 16:751–754Google Scholar
  6. 6.
    Lecanu LR (1838) Études chimiques sur le sang humain. Ann Chim 2e Sér 67:54–70Google Scholar
  7. 7.
    Bernard C (1859) Leçons sur les propriétés physiologiques et les alterations pathologiques des liquids de l’organisme, vol 1. Ballière, Paris, p 254CrossRefGoogle Scholar
  8. 8.
    Hoppe-Seyler F (1866) Beiträge zur Kenntnis der Constitution des Blutes. 1. Über die Oxydation im lebenden Blute. Med chem Unt:133–140Google Scholar
  9. 9.
    Stokes G (1819–1903) (1864) On the reduction and oxidation of the colouring matter of the blood. Proc Roy Soc 13:355–364; 357 Google Scholar
  10. 10.
    Gerlach J (1858) Mikroskopische Studien aus dem Gebiete der menschlichen Morphologie. Ferdinand Enke, Erlangen, pp 1–4Google Scholar
  11. 11.
    Krafts KP, Hempelmann E, Oleksyn BJ (2011) The color purple: from royalty to laboratory, with apologies to Malachowski. Biotechnic Histochem 86:7–35CrossRefGoogle Scholar
  12. 12.
    Fruton JS (1972) Molecules and life: historical essays on the interplay of chemistry and biology. Wiley, New York 195Google Scholar
  13. 13.
    Zacharias E (1881) Über die chemische Beschaffenheit des Zellkerns. Botanische Zeitung 39:169–176Google Scholar
  14. 14.
    Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F.C.W. Vogel, Leipzig, p 129Google Scholar
  15. 15.
    Kasten FH (1996) Paul Ehrlich: pathfinder in cell biology. 1. Chronicle of his life and accomplishments in immunology, cancer research, and chemotherapy. Biotech Histochem 71(1):2–37CrossRefGoogle Scholar
  16. 16.
    Ehrlich P (1878) Contribution to the theory and practice of histological staining. In: Himmelweit H (ed) The collected papers of Paul Ehrlich, 1956–1960. Pergamon Press, London, pp 73–74Google Scholar
  17. 17.
    Parascandola J, Jasensky R (1974) Origins of the receptor theory of drug action. Bulletin Hist Med 48:199–220Google Scholar
  18. 18.
    Marquardt M (1951) Paul Ehrlich. Schuman, New York, p 18CrossRefGoogle Scholar
  19. 19.
    Ehrlich P (1885) Sauerstoff-Bedürfnis des Organismus (The need of the organism for oxygen). Habilitationschrift. August Hirschwald, Berlin, p 9Google Scholar
  20. 20.
    Witkop B (1982) Paul Ehrlich: his ideas and his legacy. In: Bernhard CG, Crawford E, Sörbom P (eds) Science, technology and society in the time of Alfred Nobel. Pergamon Press, OxfordGoogle Scholar
  21. 21.
    Mazumdar P (1974) The antigen-antibody reaction and the physics and chemistry of life. Bulletin Hist Med 48:1–21Google Scholar
  22. 22.
    Langley JN (1901) Observations on the physiological action of extracts of the supra-renal bodies. J Physiol 27:237–256Google Scholar
  23. 23.
    Ehrlich P (1913) Address in pathology on chemotherapy. British Med J 1:354Google Scholar
  24. 24.
    Béchamp A (1863) C R Acad Sci 56:1172–1175Google Scholar
  25. 25.
    Ehrlich P, Bertheim A (1907) Ber Dtsch Chem Ges 40:3292–3297CrossRefGoogle Scholar
  26. 26.
    Stadler A-M, Harrowfield J (2011) Places and chemistry: Strasbourg—a chemical crucible seen through historical personalities. Chem Soc Rev 40:2061–2108Google Scholar
  27. 27.
    Lloyd NC, Morgan HW, Nicholson BK, Ronimus RS (2005) The composition of Ehrlich’s Salvarsan: resolution of a century-old debate. Angew Chem Int Ed 44:941–944CrossRefGoogle Scholar
  28. 28.
    Levinson AS (1977) The structure of Salvarsan and the arsenic-arsenic double bond. J Chem Educ 54:98–99CrossRefGoogle Scholar
  29. 29.
    Travis AS (1989) Science as receptor of technology: Paul Ehrlich and the synthetic dyestuffs industry. Sci Context 3:383–408CrossRefGoogle Scholar
  30. 30.
    Paraphrased from a letter of Paul Ehrlich to Christian Herter, and quoted by the latter in “Imagination and Idealism in the Medical Sciences,” an address given at the opening of the Columbia University Medical School, 23 September 1909; as given by Dale HH (1956) Introduction. In: Himmelweit F, Marquardt M, Dale H (eds) The collected papers of Paul Ehrlich. Histology, biochemistry and pathology, vol I. Pergamon Press, London, pp 1–18; 9Google Scholar
  31. 31.
    Bäumler C (1984) Paul Ehrlich: Scientist for Life. Holmes & Meier, New York; p 62Google Scholar
  32. 32.
    Domagk G—biography. Nobelprize.org. 14 Dec 2011. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1939/domagk-bio.html. Accessed 14 Dec 2011
  33. 33.
    Wood ME (2010) Milestones: soldier sulfa. Chem Heritage 28(1):7Google Scholar
  34. 34.
    Müller P—biography. Nobelprize.org. 14 Dec 2011. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1948/muller-bio.html. Accessed 14 Dec 2011
  35. 35.
    Sadasivaiah S, Tozan Y, Breman JG (2007) Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? Am J Trop Med Hyg 77(Suppl 6):249–263Google Scholar
  36. 36.
    Cambrosio A, Keating P (1992) Between fact and technique: the beginnings of hybridoma technology. J Hist Biol 25:175–230CrossRefGoogle Scholar
  37. 37.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. It is interesting to note that the editors of Nature saw nothing exceptional in this paper. Although it was submitted as a regular article, it was relegated to the “Letters to Nature” section, and preceded by 15 other letters on such earth-shaking subjects as visual functions in goldfish and defensive stoning by baboonsGoogle Scholar
  38. 38.
    Jerne NK—autobiography. Nobelprize.org. 14 Dec 2011. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1984/jerne-autobio.html. Accessed 14 Dec 2011
  39. 39.
    Waldmann TA (1991) Monoclonal antibodies in diagnosis and therapy. Science 252:1657–1662; 1657 (reprinted with permission from AAAS)Google Scholar
  40. 40.
    Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwells Scientific Ltd, OxfordCrossRefGoogle Scholar
  41. 41.
    Délepine M (1951) Joseph Pelletier and Joseph Caventou. J Chem Educ 28:454–461CrossRefGoogle Scholar
  42. 42.
    Krasnovsky AA (2002) Chlorophyll isolation, structure and function: major landmarks of the early history of research in the Russian Empire and the Soviet Union. Photosynth Res 76:389–403CrossRefGoogle Scholar
  43. 43.
    Willstätter RM (1920) On plant pigments. Nobel lectures. Elsevier, Amsterdam, pp 301–312Google Scholar
  44. 44.
    Tswett MS (1906) Physikalish-chemische Studien über das Chlorophyll. Die Absortionnen. Ber Deutch Bot Ges 24:316–323Google Scholar
  45. 45.
    Fischer H—biography. Nobelprize.org. 15 Dec 2011. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1930/fischer-bio.html. Accessed 15 Dec 2011
  46. 46.
    Woodward RB (1972) Recent advances in the chemistry of natural products. Nobel lectures, Chemistry 1963–1970. Elsevier, Amsterdam, pp 100–121Google Scholar
  47. 47.
    Wackenroder H (1831) Ueber das Oleum radicis Dauci aetherum, das Carotin, den Carotenzucker und den officinellen succus Dauci; so wie auch über das Mannit, welches in dem Möhrensafte durch eine besondere Art der Gährung gebildet wird. Geigers Magazin der Pharmazie 33:144–172Google Scholar
  48. 48.
    Sourkes TL (2009) The discovery and early history of carotene. Bull Hist Chem 34(1):32–38 (This paper is cited in Table 9.2 along with the original sources which are contained in the “References and Notes”)Google Scholar
  49. 49.
    Zeise WC (1847) Ueber das Carotin. Ann Chem Pharm 62:380–382CrossRefGoogle Scholar
  50. 50.
    Zeise WC (1847) Einige Bemerkungen über das Carotin. J Prakt Chem 40:297–299CrossRefGoogle Scholar
  51. 51.
    Arnaud A (1886) Recherches sur la composition de la carotine, sa fonction chimique et sa formule. C R Séances Acad Sci Ser C 102:1119–1122Google Scholar
  52. 52.
    Arnaud A (1889) Recherches sur la carotine, son role physiologique probable dans la feuille. C R Séances Acad Sci Ser C 109:911–914Google Scholar
  53. 53.
    Piccolo G, Lieben A (1886) Studi sul corpo lutea della vacca. Giornale di Scienze Naturali ed Economiche (Palermo) 2:25Google Scholar
  54. 54.
    Drabkin DL (1958) Thudichum, Chemist of the Brain. University of Pennsylvania Press, PhiladelphiaGoogle Scholar
  55. 55.
    Willstätter RM, Mieg W (1907) Ueber die Gelben Begleiter des Chlorophylls. Justus Liebigs Ann Chem 355:1–28CrossRefGoogle Scholar
  56. 56.
    Karrer P (1966) Carotenoids, Flavins and Vitamin A and B2. Nobel lectures: chemistry, 1922–1941. Elsevier, Amsterdam, pp 443–448Google Scholar
  57. 57.
    Miller JA (1993) 1937 Nobel Laureate: Paul Karrer (1889–1971). In: Miles W (ed) Nobel Laureates in chemistry, 1901–1992. American Chemical Society, Washington, DC, pp 242–246Google Scholar
  58. 58.
    Kuhn R—biography. Nobelprize.org. 18 Dec 2011. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1938/kuhn-bio.html. Accessed 18 Dec 2011
  59. 59.
    Miller JA (1993) 1938 Nobel Laureate: Richard Kuhn (1900–1967). In: Miles W (ed) Nobel Laureates in chemistry, 1901–1992. American Chemical Society, Washington, DC, pp 248–252Google Scholar
  60. 60.
    Willstätter RM (1965) From my life. E.A. Benjamin, New York (Translated from the German by LS Hornig)Google Scholar
  61. 61.
    Karrer P (1966) Carotenoids, flavins and vitamin A and B2. Nobel lectures: chemistry, 1922-1941. Elsevier, Amsterdam, pp 443–448, 407–413Google Scholar
  62. 62.
    Deichmann U (2001) German-Jewish chemists and biochemists in exile. In: Szöllösi-Janze M (ed) Science in the third Reich. Oxford International Publishers, Oxford, pp 264–265Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of ChemistryThe College of New RochelleNew RochelleUSA

Personalised recommendations