The Chemical Causes of Color

  • Mary Virginia Orna
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Thousands of tourists from all over the world flock to two island sites at opposite ends of the earth from one another for no other reason than to gaze in awe and wonder at the color phenomenon each one is famous for. Hawaii’s Green Sand Beach on the southernmost point of the Big Island boasts an entire beach covered with tiny olivine crystals that sparkle like emeralds in the tropical sun. Olivine is a common constituent of lava flows, but only in this one place has it been found of gem quality—the crystals in this case seem to have floated on a former lava lake. Around the globe in the North Atlantic, a unique body of water known as the Blue Lagoon on Iceland’s Reykjanes peninsula plays host to about 400,000 visitors a year who come to take a dip in this unique body of water—also an indirect product of an ancient lava flow flooded by the transforming effluent from a nearby geothermal power plant. What is it about some materials that give rise to these and so many other wonderful colors? Why are other substances colorless, and can we modify them to produce color? The answers to these questions are not simple, and they involve awareness of several important insights regarding the nature of matter, particularly atoms and molecules.


Cadmium Sulfide Lava Lake Crystal Field Splitting Neon Atom Balmer Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elschner C (1907) On the occurrence of silicate gems and other rare minerals in the Hawaiian Islands. Chem-Ztg 30:1119Google Scholar
  2. 2.
    Petursdottir SK, Bjornsdottir SH, Hreggvidsson GO, Hjorleifsdottir S, Kristjansson JK (2009) Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon. FEMS Microbiol Ecol 70(3):425–432CrossRefGoogle Scholar
  3. 3.
    Dalton J (1803) On the absorption of gases by water and other liquids. In Alembic Club Reprint No. 2 (1893) Foundations of the atomic theory. William F. Clay, Edinburgh, p. 25Google Scholar
  4. 4.
    See for example Lee Buescher’s website: and Barcodes Accessed 11 Dec 2011
  5. 5.
    Mendeleev D (1869) On the relationship of the properties of the elements to their atomic weights. Zeitschrift für Chemie 12:405–406Google Scholar
  6. 6.
    Thomson JJ (1897) Cathode rays. Phil Mag 44:293–316CrossRefGoogle Scholar
  7. 7.
    Goldstein E (1898) Über eine noch nicht untersuchte Strahlungsform an der Kathode inducirter Entladungen. Annalen der Physik 300:38–48CrossRefGoogle Scholar
  8. 8.
    Rutherford E (1911) The scattering of the α and β rays and the structure of the atom. Proc Manch Lit Phil Soc, IV 55:18–20Google Scholar
  9. 9.
    Planck M (1922) 1920 Nobel prize address. In: Moulton FR, Schifferes JJ (eds) Autobiography of science 1950. Doubleday, New YorkGoogle Scholar
  10. 10.
    Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17:132–148CrossRefGoogle Scholar
  11. 11.
    Moseley HGJ (1913) The high frequency spectra of the elements. Phil Mag 26:1024CrossRefGoogle Scholar
  12. 12.
    Soddy F (1913) Intra-atomic charge. Nature 92:399–400CrossRefGoogle Scholar
  13. 13.
    Chadwick J (1932) The existence of a neutron. Proc Roy Soc A 136:692–708CrossRefGoogle Scholar
  14. 14.
    Bohr N (1913) On the constitution of atoms and molecules. Phil Mag 26:1–25CrossRefGoogle Scholar
  15. 15.
    Balmer JJ (1885) Notiz über die Spektrallinien des Wasserstoffs. Ann Phys 25:80–87CrossRefGoogle Scholar
  16. 16.
    Langmuir I (1919) The structure of atoms and the octet theory of valence. Proc Natl Acad Sci U S A 5:252–259CrossRefGoogle Scholar
  17. 17.
    Russell C (1996) Edward Frankland: chemistry, controversy and conspiracy in victorian England. Cambridge University Press, Cambridge, p 108Google Scholar
  18. 18.
    Frankland E (1852) On a new series of organic bodies containing metals. Phil Trans 142:417–444; p 440Google Scholar
  19. 19.
    Kossel W (1916) 1. Über Molekülbildung als Frage des Atombaus. Ann Phys 49(IV):229–362; p 241Google Scholar
  20. 20.
    Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–786; pp. 777–778 (reprinted with permission, American Chemical Society © 1916)Google Scholar
  21. 21.
    Langmuir I (1919) The arrangement of electrons in atoms and molecules. J Am Chem Soc 41:868–934; p. 933 (reprinted with permission, American Chemical Society © 1919)Google Scholar
  22. 22.
    Pauling L (1931a) Quantum mechanics and the chemical bond. Phys Rev 37:1185–1186 (this introductory paper is not part of the series, but leads into it)Google Scholar
  23. 23.
    Pauling L (1931) The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc 53:1367–1400CrossRefGoogle Scholar
  24. 24.
    Pauling L (1931) The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J Am Chem Soc 53:3225–3237CrossRefGoogle Scholar
  25. 25.
    Pauling L (1932) The nature of the chemical bond. III. The transition from one extreme bond type to another. J Am Chem Soc 54:988–1003CrossRefGoogle Scholar
  26. 26.
    Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582CrossRefGoogle Scholar
  27. 27.
    Pauling L, Wheland GW (1933) The nature of the chemical bond. V. The quantum-mechanical calculation of the resonance energy of benzene and naphthalene and the hydrocarbon free radicals. J Chem Phys 1:362–374CrossRefGoogle Scholar
  28. 28.
    Pauling L, Sherman J (1933) The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures. J Chem Phys 1:606–617CrossRefGoogle Scholar
  29. 29.
    Pauling L, Sherman J (1933) The nature of the chemical bond. VII. The calculation of resonance energy in conjugated systems. J Chem Phys 1:679–686Google Scholar
  30. 30.
    Orna MV (1980) Chemistry and artists’ colors: part I. Light and color. J Chem Educ 57:256–258CrossRefGoogle Scholar
  31. 31.
    Nassau K (1983) The physics and chemistry of color. The fifteen causes of color. Wiley-Interscience, New YorkGoogle Scholar
  32. 32.
    Witt ON (1876) Zur Kenntniss des Baues und der Bildung färbender Kohlenstoffverbindungen. Ber 9:522–527Google Scholar
  33. 33.
    Orna MV (1978) The chemical origins of color. J Chem Educ 55:478–484CrossRefGoogle Scholar
  34. 34.
    Griffiths J (1976a) Colour and constitution of organic molecules. Academic Press, New York, pp 82, 140Google Scholar
  35. 35.
    Griffiths J (1976b) Colour and constitution of organic molecules. Academic Press, New York, pp 17–53Google Scholar
  36. 36.
    Werner A (1893) Beiträge zur Konstitution anorganischer Verbindungen. Z Anorg Chem 3:267–330CrossRefGoogle Scholar
  37. 37.
    Van Vleck JH (1932) Theory of the variations of paramagnetic anisotropy among different salts of the iron group. Phys Rev 41:208–215CrossRefGoogle Scholar
  38. 38.
    Koren ZC (1996) Historico-chemical analysis of plant dyestuffs used in textiles from ancient Israel. In: Orna MV (ed) Archaeological chemistry: organic, inorganic and biochemical analysis. American Chemical Society, Washingon, pp 269–310CrossRefGoogle Scholar
  39. 39.
    Przibram K (1923) Verfärbung und Lumineszenz durch Becquerelstrahlen. Zeit Physik 20:196–208CrossRefGoogle Scholar
  40. 40.
    Rabinowitch E (1942) Electron transfer spectra and their photochemical effects. Rev Modern Phys 14:127CrossRefGoogle Scholar
  41. 41.
    Yu PY, Cardona M (2004) Fundamentals of semiconductors: physics and materials properties. Springer, New YorkGoogle Scholar
  42. 42.
    Turley J (2002) The essential guide to semiconductors. Prentice Hall, New YorkGoogle Scholar
  43. 43.
    Orna MV (1980) Chemistry and artists’ colors: Part II. Structural features of colored compounds. J Chem Educ 57:264–267CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of ChemistryThe College of New RochelleNew RochelleUSA

Personalised recommendations