Skip to main content

Using SOM to Clustering of Web Sessions Extracted by Techniques of Web Usage Mining

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

  • 1615 Accesses

Abstract

Everyday a huge amount of pages are published on the Web, and, as a consequence, the users’ difficulty to locate those that will meet their needs is increasingly bigger. The challenge for web designers and e-commerce companies is to identify groups of users that present similar interests in order to personalize navigation environments to meet those interests. In an attempt to offer that to the countless web users, in the last years, several researches have been done on clustering applied to Web Usage Mining. In this paper, a log file is preprocessed to map the sequence of visits for each user’s session. A Session-Path Matrix is used as input to SOM Map and identifying patterns between each session. The results show the similarities between the sessions based on time spent on visited paths and volume transferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eirinaki, M., Vazirgiannis, M.: Web Mining for Web Personalization. ACM Transactions on Internet Technology 3, 1–27 (2003)

    Article  Google Scholar 

  2. Etminani, K., Delui, A.R., Yanehsari, N.R., Rouhani, M.: Web usage mining: Discovery of the users’ navigational patterns using SOM. In: First International Conference on Networked Digital Technologies, pp. 224–249. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  3. Ling, H., Liu, Y., Yang, S.: An Ant Colony Model for Dynamic Mining of Users Interest Navigation Patterns. In: IEEE International Conference on Control and Automation, pp. 281–283. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  4. Hussain, T., Asghar, S., Masood, N.: Web usage mining: A survey on preprocessing of web log file. In: International Conference on Information and Emerging Technologies, pp. 1–6. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  5. Petrilis, D., Halatsis, C.: Combining SOMs and Ontologies for Effective Web Site Mining. In: Self Organizing Maps - Applications and Novel Algorithm Design, pp. 109–124. InTech, Rijeka (2011)

    Google Scholar 

  6. Khosravi, M., Tarokh, M.J.: Dynamic mining of users interest navigation patterns using naive Bayesian method. In: IEEE International Conference on Intelligent Computer Communication and Processing, pp. 119–122. IEEE Press, New York (2010)

    Google Scholar 

  7. Markov, Z., Larose, D.T.: Data Mining the Web – uncovering patterns in Web Context, Structure, and Usage. Wiley, New Jersey (2007)

    Google Scholar 

  8. Nadi, S., Saraee, M., Davarpanah-Jazi, M.: A fuzzy recommender system for dynamic prediction of user’s behavior. In: International Conference on Internet Technology and Secured Transactions, pp. 1–5. IEEE Press, New York (2010)

    Google Scholar 

  9. Pamnani, R., Chawan, P.: Web Usage Mining: A Research Area in Web Mining. In: Proceedings of ISCET 2010, pp. 73–77 (2010)

    Google Scholar 

  10. Vellingiri, J., Pandian, S.C.: A Survey on Web Usage Mining. Global Journal of Computer Science and Technology, 66–72 (2011)

    Google Scholar 

  11. Xiao, J., Zhang, Y.: Clustering of web users using session-based similarity measures. In: International Conference on Computer Networks and Mobile Computing, pp. 223–228. IEEE Press, New York (2001)

    Google Scholar 

  12. Xiao, J., Zhang, Y., Jia, X., Li, T.: Measuring similarity of interests for clustering Web-users. In: 12th Australasian on Database Conference, pp. 107–114. IEEE Press, New York (2001)

    Chapter  Google Scholar 

  13. Pani, S.K., Panigrahy, L., Sankar, V.H., Ratha, B.K., Mandal, A.K., Padhi, S.K.K.: Web Usage Mining: A Survey on Pattern Extraction from Web Logs. International Journal of Instrumentation, Control & Automation 1(1) (2011)

    Google Scholar 

  14. Wang, S., Xu, C., Wu, R.: Clustering Method Based on Fuzzy Multisets for Web Pages and Customer Segments. In: International Seminar on Business and Information Management, vol. 2, pp. 125–128. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  16. Costa, J.A.F., Netto, M.L.A.: Clustering of complex shaped data sets via Kohonen maps and mathematical morphology. In: Dasarathy, B. (ed.) Proceedings of the SPIE, Data Mining and Knowledge Discovery, vol. 4384, pp. 16–27 (2001)

    Google Scholar 

  17. Yamaguchi, T., Ichimura, T.: Visualization using multi-layered U-Matrix in growing Tree-Structured self-organizing feature map. In: IEEE International Conference Systems, Man and Cybernetics (SMC), pp. 3580–3585 (2011)

    Google Scholar 

  18. Cheng, X., Liu, H.: Personalized Services Research Based on Web Data Mining Technology. In: Second International Symposium on Computational Intelligence and Design, vol. 2, pp. 177–180 (2009)

    Google Scholar 

  19. Dong, Y., Zhang, H., Jiao, L.: Research on Application of User Navigation Pattern Mining Recommendation. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, vol. 2, pp. 6106–6110 (2006)

    Google Scholar 

  20. Uriarte, E.A., Martín, F.D.: Topology Preservation in SOM. International Journal of Mathematical and Computer Sciences, 19–22 (2005)

    Google Scholar 

  21. Haykin, S.: Neural networks: A comprehensive foundation, 2nd edn. Macmillan College Publishing Company, N. York (1999)

    MATH  Google Scholar 

  22. Gonçalves, M., Netto, M., Zullo Jr., J., Costa, J.A.F.: A new method for unsupervised classification of remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods. Intl. Journal of Remote Sensing 29(11), 3171–3207 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Paiva, F.A.P., Costa, J.A.F. (2012). Using SOM to Clustering of Web Sessions Extracted by Techniques of Web Usage Mining. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics