Skip to main content

A Comparative Analysis of FSS with CMA-ES and S-PSO in Ill-Conditioned Problems

  • Conference paper
  • 1484 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7435)

Abstract

This paper presents a comparative analyzes between three search algorithms, named Fish School Search, Particle Swarm Optimization and Covariance Matrix Adaptation Evolution Strategy applied to ill-conditioned problems. We aim to demonstrate the effectiveness of the Fish School Search in the optimization processes when the objective function has ill-conditioned properties. We achieved good results for the Fish School Search and in some cases we obtained superior results when compared to the other algorithms.

Keywords

  • Fish School Search
  • Covariance matrix adaptation
  • Particle Swarm Optimization
  • Ill-conditioned problems
  • Invariance
  • Non-separable problems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32639-4_51
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-32639-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, N., Ros, R., Mauny, N., Schoenauer, M., Auger, A.: Impacts of invariance in search: When cma-es and pso face ill-conditioned and non-separable problems. Applied Soft Computing 11(8), 5755–5769 (2011)

    CrossRef  Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle swarm optimization, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  3. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000)

    Google Scholar 

  4. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9, 159–195 (2001)

    CrossRef  Google Scholar 

  5. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer (2006)

    Google Scholar 

  6. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317 (May 1996)

    Google Scholar 

  7. Bastos-Filho, C.J.A., de Lima Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: A novel search algorithm based on fish school behavior. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 2646–2651 (2008)

    Google Scholar 

  8. Bastos Filho, C.J.A., de Lima Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: Fish School Search. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. SCI, vol. 193, pp. 261–277. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Bastos-Filho, C.J.A., de Lima-Neto, F.B., Sousa, M.F.C., Pontes, M.R., Madeiro, S.S.: On the influence of the swimming operators in the fish school search algorithm. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 5012–5017 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da C.C. Lins, A.J., Lima-Neto, F.B., Fages, F., Bastos-Filho, C.J.A. (2012). A Comparative Analysis of FSS with CMA-ES and S-PSO in Ill-Conditioned Problems. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)