Skip to main content

Visual Data Mining for Identification of Patterns and Outliers in Weather Stations’ Data

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Abstract

Quality control of climate data obtained from weather stations is essential to ensure reliability of research and services based on this data. One way to perform this control is to compare data received from one station with data from other stations which somehow are expected to show similar behavior. The purpose of this work is to evaluate some visual data mining techniques to identify groupings (and outliers of these groupings) of weather stations using historical precipitation data in a specific time interval. We present and discuss the techniques’ details, variants, results and applicability on this type of problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, 1st edn. Cambridge Press (2003)

    Google Scholar 

  2. Expert Team on Requirements of Data from Automatic Weather Stations: Final report (2002), http://www.wmo.int/pages/prog/www/OSY/Meetings/ET-AWS1-2002/Final-Report.pdf

  3. Garcia, J.R.M., Carvalho, L.S.M., Júnior, H.C., Sanches, M.B.: BDC - banco de dados climatológico. In: Proceedings do XIV Congresso Brasileiro de Meteorologia (2006)

    Google Scholar 

  4. Simoff, S.J., Böhlen, M.H., Mazeika, A.: Visual Data Mining: An Introduction and Overview. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 1–12. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Keim, D., Panse, C., Sips, M.: Visual Data Mining of Large Spatial Data Sets. In: Bianchi-Berthouze, N. (ed.) DNIS 2003. LNCS, vol. 2822, pp. 201–215. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Macêdo, M., Cook, D., Brown, T.: Visual data mining in atmospheric science data. Data Mining and Knowledge Discovery 4, 69–80 (2000)

    Article  Google Scholar 

  7. Kopanakis, I., Pelekis, N., Karanikas, H., Mavroudkis, T.: Visual Techniques for the Interpretation of Data Mining Outcomes. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 25–35. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial And Temporal Data: A Systematic Approach. Springer (2006)

    Google Scholar 

  9. Huang, M.L., Nguyen, Q.V.: Context Visualization for Visual Data Mining. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 248–263. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Andrienko, G., Andrienko, N., Gatalsky, P.: Visual Mining of Spatial Time Series Data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 524–527. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Watanabe, C., Touma, E., Yamauchi, K., Noguchi, K., Hayashida, S., Joe, K.: Development of an Interactive Visual Data Mining System for Atmospheric Science. In: Labarta, J., Joe, K., Sato, T. (eds.) ISHPC 2006 and ALPS 2006. LNCS, vol. 4759, pp. 279–286. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Inselberg, A.: Parallel Coordinates – Visual Multidimensional Geometry and Its Applications. Springer (2009)

    Google Scholar 

  13. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, 1st edn. Plenum Press (1987)

    Google Scholar 

  14. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition. World Scientific Publishing (1996)

    Google Scholar 

  15. Yang, M.S., Wu, K.L.: Unsupervised possibilistic clustering. Pattern Recogn. 39(1), 5–21 (2006)

    Article  Google Scholar 

  16. Wu, K.L.: Analysis of parameter selections for fuzzy c-means. Pattern Recogn. 45(1), 407–415 (2012)

    Article  MATH  Google Scholar 

  17. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer (1997)

    Google Scholar 

  18. Barreto, G.: Time Series Prediction with the Self-Organizing Map: A Review. In: Hammer, B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic Integration. SCI, vol. 77, pp. 135–158. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Keogh, E., Lin, J.: Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowledge and Information Systems 8, 154–177 (2005)

    Article  Google Scholar 

  20. Chen, J.: Making subsequence time series clustering meaningful. In: Fifth IEEE International Conference on Data Mining, 8 p. (November 2005)

    Google Scholar 

  21. Koua, E., Kraak, M.J.: Geovisualization to support the exploration of large health and demographic survey data. International Journal of Health Geographics 3, 1–13 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcia, J.R.M., Monteiro, A.M.V., Santos, R.D.C. (2012). Visual Data Mining for Identification of Patterns and Outliers in Weather Stations’ Data. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics