Abstract
Quality control of climate data obtained from weather stations is essential to ensure reliability of research and services based on this data. One way to perform this control is to compare data received from one station with data from other stations which somehow are expected to show similar behavior. The purpose of this work is to evaluate some visual data mining techniques to identify groupings (and outliers of these groupings) of weather stations using historical precipitation data in a specific time interval. We present and discuss the techniques’ details, variants, results and applicability on this type of problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, 1st edn. Cambridge Press (2003)
Expert Team on Requirements of Data from Automatic Weather Stations: Final report (2002), http://www.wmo.int/pages/prog/www/OSY/Meetings/ET-AWS1-2002/Final-Report.pdf
Garcia, J.R.M., Carvalho, L.S.M., Júnior, H.C., Sanches, M.B.: BDC - banco de dados climatológico. In: Proceedings do XIV Congresso Brasileiro de Meteorologia (2006)
Simoff, S.J., Böhlen, M.H., Mazeika, A.: Visual Data Mining: An Introduction and Overview. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 1–12. Springer, Heidelberg (2008)
Keim, D., Panse, C., Sips, M.: Visual Data Mining of Large Spatial Data Sets. In: Bianchi-Berthouze, N. (ed.) DNIS 2003. LNCS, vol. 2822, pp. 201–215. Springer, Heidelberg (2003)
Macêdo, M., Cook, D., Brown, T.: Visual data mining in atmospheric science data. Data Mining and Knowledge Discovery 4, 69–80 (2000)
Kopanakis, I., Pelekis, N., Karanikas, H., Mavroudkis, T.: Visual Techniques for the Interpretation of Data Mining Outcomes. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 25–35. Springer, Heidelberg (2005)
Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial And Temporal Data: A Systematic Approach. Springer (2006)
Huang, M.L., Nguyen, Q.V.: Context Visualization for Visual Data Mining. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 248–263. Springer, Heidelberg (2008)
Andrienko, G., Andrienko, N., Gatalsky, P.: Visual Mining of Spatial Time Series Data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 524–527. Springer, Heidelberg (2004)
Watanabe, C., Touma, E., Yamauchi, K., Noguchi, K., Hayashida, S., Joe, K.: Development of an Interactive Visual Data Mining System for Atmospheric Science. In: Labarta, J., Joe, K., Sato, T. (eds.) ISHPC 2006 and ALPS 2006. LNCS, vol. 4759, pp. 279–286. Springer, Heidelberg (2008)
Inselberg, A.: Parallel Coordinates – Visual Multidimensional Geometry and Its Applications. Springer (2009)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, 1st edn. Plenum Press (1987)
Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition. World Scientific Publishing (1996)
Yang, M.S., Wu, K.L.: Unsupervised possibilistic clustering. Pattern Recogn. 39(1), 5–21 (2006)
Wu, K.L.: Analysis of parameter selections for fuzzy c-means. Pattern Recogn. 45(1), 407–415 (2012)
Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer (1997)
Barreto, G.: Time Series Prediction with the Self-Organizing Map: A Review. In: Hammer, B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic Integration. SCI, vol. 77, pp. 135–158. Springer, Heidelberg (2007)
Keogh, E., Lin, J.: Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowledge and Information Systems 8, 154–177 (2005)
Chen, J.: Making subsequence time series clustering meaningful. In: Fifth IEEE International Conference on Data Mining, 8 p. (November 2005)
Koua, E., Kraak, M.J.: Geovisualization to support the exploration of large health and demographic survey data. International Journal of Health Geographics 3, 1–13 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garcia, J.R.M., Monteiro, A.M.V., Santos, R.D.C. (2012). Visual Data Mining for Identification of Patterns and Outliers in Weather Stations’ Data. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-32639-4_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32638-7
Online ISBN: 978-3-642-32639-4
eBook Packages: Computer ScienceComputer Science (R0)