Brain Parcellation Aids in Electrode Localization in Epileptic Patients

  • Jue Wu
  • Kathryn Davis
  • Allan Azarion
  • Yuanjie Zheng
  • Hongzhi Wang
  • Brian Litt
  • James Gee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7264)

Abstract

Purpose: We aim to enhance the electrode localization with reference to spatial neuroanatomy in intracranial electroencephalogram (IEEG), which provides greater spatial resolution than traditional scalp electroencephalogram.

Methods: CT-MR rigid registration, MR non-rigid registration and prior-based segmentation are employed in an image processing pipeline to normalize patient CT, patient MR and an external labeled atlas to the same space.

Results: Despite possible abnormal cerebral structure and postoperative brain deformation, the proposed pipeline is able to automatically superimpose all the electrodes on the patient’s parcellated brain and visualize epileptogenic foci and IEEG events.

Conclusion: This work will greatly diminish epileptologist’ manual work and the potential for human error, allowing for automated and accurate detection of the anatomical position of electrodes. It also demonstrates the feasibility of applying brain parcellation to epileptic brains.

Keywords

Middle Frontal Gyrus Precentral Gyrus Electrode Localization Postcentral Gyrus Motor Speech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avants, B., Tustison, N., Wu, J., Cook, P., Gee, J.: An open source multivariate framework for n-tissue segmentation evaluation on public data. Neuroinformatics (in press)Google Scholar
  2. 2.
    Brodmann, K.: Brodmann’s: Localisation in the Cerebral Cortex. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Christensen, G.E., Geng, X., Kuhl, J.G., Bruss, J., Grabowski, T.J., Pirwani, I.A., Vannier, M.W., Allen, J.S., Damasio, H.: Introduction to the Non-rigid Image Registration Evaluation Project (NIREP). In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 128–135. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dalal, S., Edwards, E., Kirsch, H., Barbaro, N., Knight, R., Nagarajan, S.: Localization of neurosurgically implanted electrodes via photograph MRI-radiograph coregistration. Journal of Neuroscience Methods, 106–115 (2008)Google Scholar
  5. 5.
    Ding, L., Wilke, C., Xu, B., Xu, X., Drongelene, W., Kohrman, M., He, B.: EEG Source Imaging: Correlate Source Locations and Extents with ECoG and Surgical Resections in Epilepsy Patients. Journal of Clinical Neurophysiology, 130–136 (2007)Google Scholar
  6. 6.
    Klein, A., Andersson, J., Ardekani, B., Ashburner, J., Avants, B., Chiang, M., Christensen, G., Collins, D., Gee, J., Hellier, P., Hyun, S., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R., Mann, J., Parsey, R.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786–802 (2009)CrossRefGoogle Scholar
  7. 7.
    Kwan, P., Brodie, M.: Epilepsy after the first drug fails: substitution or add-on? Seizure 9(7), 464–468 (2000)CrossRefGoogle Scholar
  8. 8.
    Laviolette, P., Rand, S., Ellingson, B., Raghavan, M., Lew, S., Schmainda, K., Mueller, W.: 3D visualization of subdural electrode shift as measured at craniotomy reopening. Epilepsy Research (in press)Google Scholar
  9. 9.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 187–198 (1997)Google Scholar
  10. 10.
    Marieb, E., Hoehn, K.: Human Anatomy and Physiology, 7th edn. Pearson Benjamin Cummings, San Francisco (2007)Google Scholar
  11. 11.
    Okonma, S., Blount, J., Gross, R.: Planning extent of resection in epilepsy: Limited versus large resections. Epilepsy and Behavior, 233–240 (2011)Google Scholar
  12. 12.
    Smith, S.: Fast robust automated brain extraction. Human Brain Mapping, 143–155 (2002)Google Scholar
  13. 13.
    Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jue Wu
    • 1
  • Kathryn Davis
    • 2
  • Allan Azarion
    • 2
  • Yuanjie Zheng
    • 1
  • Hongzhi Wang
    • 1
  • Brian Litt
    • 2
  • James Gee
    • 1
  1. 1.Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaUSA
  2. 2.Department of Neurology and Penn Epilepsy Center, Perelman School of MedicineUniversity of PennsylvaniaUSA

Personalised recommendations