Enhanced Planning of Interventions for Spinal Deformity Correction Using Virtual Modeling and Visualization Techniques

  • Cristian A. Linte
  • Kurt E. Augustine
  • Paul M. Huddleston
  • Anthony A. Stans
  • David R. HolmesIII
  • Richard A. Robb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7264)


Traditionally spinal correction procedures have been planned using 2D radiographs or image slices extracted from conventional computed tomography scans. Such images prove inadequate for accurately and precisely planning interventions, mainly due to the complex 3D anatomy of the spinal column, as well as the close proximity of nerve bundles and vascular structures that must be avoided during the procedure. To address these limitations and provide the surgeon with more representative information while taking full advantage of the 3D volumetric imaging data, we have developed a clinician-friendly application for spine surgery planning. This tool enables rapid oblique reformatting of each individual vertebral image, 3D rendering of each or multiple vertebrae, as well as interactive templating and placement of virtual implants. Preliminary studies have demonstrated improved accuracy and confidence of pre-operative measurements and implant localization and suggest that the proposed application may lead to increased procedure efficiency, safety, shorter intra-operative time, and lower costs.


Vertebral Body Pedicle Screw Preoperative Plan Screw Placement Congenital Scoliosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bichlmeier, C., Heining, S.M., Rustaee, M., Navab, N.: Virtually Extended Surgical Drilling Device: Virtual Mirror for Navigated Spine Surgery. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 434–441. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Sukovich, W., Brink-Danan, S., Hardenbrook, M.: Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the spineassist. Int. J. Med. Robot. 2, 114–122 (2006)CrossRefGoogle Scholar
  3. 3.
    Weinstein, J., Rydevik, B., Rauschning, W.: Anatomic and technical considerations of pedicle screw fixation. Clinical Orthopaedics & Related Research 284, 34–46 (1992)Google Scholar
  4. 4.
    Cohen, M., Wall, E., Brown, R., Rydevik, B., Garfin, S.: Cauda equina anatomy II: Extrathecal nerve roots and dorsal root ganglia. Spine 15, 1248–1251 (1990)CrossRefGoogle Scholar
  5. 5.
    Rauschning, W.: Computed tomography and cryomicrotomy of lumbar spine specimens: A new technique for multi-planar anatomic correlation. Spine 8, 170–180 (1983)CrossRefGoogle Scholar
  6. 6.
    Rauschning, W.: Normal and pathologic anatomy of the lumbar root canals. Spine 12, 1008–1019 (1987)CrossRefGoogle Scholar
  7. 7.
    Rydevik, B., Brown, M., Lundborg, G.: Pathoanatomy and pathophysiology of nerve root compression. Spine 9, 7–15 (1984)CrossRefGoogle Scholar
  8. 8.
    Wall, E., Cohen, M., Massie, J., Rydevik, B., Garfin, S.: Cauda equine anatomy I: Intrathecal nerve root organization. Spine 15, 1244–1247 (1990)CrossRefGoogle Scholar
  9. 9.
    Cleary, K., Clifford, M., Stoianovici, D., Freedman, M., Mun, S.K., Watson, V.: Technology improvements for image-guided and minimally invasive spine procedures. IEEE Trans. Inf. Technol. Biomed. 6, 249–261 (2002)CrossRefGoogle Scholar
  10. 10.
    Schafer, S., Nithiananthan, S., Mirota, D.J., Uneri, A., Stayman, J.W., Zbijewski, W., Schmidgunst, C., Kleinszig, G., Khanna, A.J., Siewerdsen, J.H.: Mobile c-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med. Phys. 38(2-11), 4563Google Scholar
  11. 11.
    Augustine, K., Holmes III, D.R., Hanson, D., Robb, R.A.: Comprehensive, powerful, efficient, intuitive: A new software framework for clinical imaging applications. In: Proc. SPIE Medical Imaging, vol. 6141, pp. 61410N1–61410N10 (2006)Google Scholar
  12. 12.
    Hanson, D., Robb, R.A., Aharon, S., Augustine, K.E., Cameron, B.M., Camp, J.J., Karwoski, R.A., Larson, A.G., Stacy, M.C., Workman, E.L.: New software toolkits for comprehensive visualization and analysis of three-dimensional multimodal biomedical images. J Digit Imaging 10(suppl.1), 229–230 (1997)CrossRefGoogle Scholar
  13. 13.
    Robb, R.A., Barillot, C.: Interactive display and analysis of 3-D medical images. IEEE Trans. Med. Imaging 8, 217–226 (1989)CrossRefGoogle Scholar
  14. 14.
    Robb, R.A., Hanson, D.P.: ANALYZE: A software system for biomedical image analysis. In: Proc. Visualization in Biomedical Computing, pp. 507–518 (1990)Google Scholar
  15. 15.
    Robb, R.A., Hanson, D.P.: The analyzeTM software system for visualization and analysis in surgery simulation. In: Lavallee, A., Taylor, R., Burdea, G., Mosges, R. (eds.) Computer Integrated Surgery, pp. 175–190. MIT Press, Cambridge (1995)Google Scholar
  16. 16.
    Cameron, B.M., Manduca, A., Robb, R.A.: Patient specific anatomic models: Geometric surface generation from 3D medical images using a specified polygonal budget. In: Sieburg, H., Weghorst, S., Morgan, K. (eds.) Health Care in the Information Age, pp. 447–460. IOS Press and Ohmsha (1996)Google Scholar
  17. 17.
    Robb, R.A., Cameron, B.M., Aharon, S.: Efficient shape-based algorithms for modeling patient specific anatomy from 3D medical images: Applications in virtual endoscopy and surgery. In: Proc. Shape Modeling and Applications, pp. 97–108 (1997)Google Scholar
  18. 18.
    Lin, W.T., Robb, R.A.: Dynamic volume texture mapping and model deformation for visually realistic surgical simulation. Stud. Health Technol. Inform. 62, 198–204 (1999)Google Scholar
  19. 19.
    Barzilay, Y., Liebergall, M., Fridlander, A., Knoller, N.: Miniature robotic guidance for spine surgery–introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int. J. Med. Robot. 2, 146–153 (2006)CrossRefGoogle Scholar
  20. 20.
    Ortmaier, T., Weiss, H., Döbele, S., Schreiber, U.: Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. Int. J. Med. Robot. 2, 350–363 (2006)CrossRefGoogle Scholar
  21. 21.
    Pechlivanis, I., Kiriyanthan, G., Engelhardt, M., Scholz, M., Lücke, S., Harders, A., Schmieder, K.: Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) 34, 392–398 (2009)CrossRefGoogle Scholar
  22. 22.
    Lieberman, I.H., Togawa, D., Kayanja, M.M., Reinhardt, M.K., Friedlander, A., Knoller, N., Benzel, E.C.: Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I — technical development and a test case result. Neurosurgery 59, 641–650 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cristian A. Linte
    • 1
  • Kurt E. Augustine
    • 1
  • Paul M. Huddleston
    • 2
  • Anthony A. Stans
    • 2
  • David R. HolmesIII
    • 1
  • Richard A. Robb
    • 1
  1. 1.Biomedical Imaging ResourceMayo ClinicRochesterUSA
  2. 2.Division of Ortopedic SurgeryMayo ClinicRochesterUSA

Personalised recommendations