Skip to main content

Quantifying Notes

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7456))

Abstract

We review several logics with propositional quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ågotnes, T.: Action and knowledge in alternating-time temporal logic. Synthese 149(2), 377–409 (2006)

    Article  Google Scholar 

  2. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. Journal of Applied Logic 8, 62–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ågotnes, T., van Ditmarsch, H.: Coalitions and announcements. In: Proceedings of 7th AAMAS, pp. 673–680. IFAAMAS (2008)

    Google Scholar 

  4. Aucher, G.: Characterizing updates in dynamic epistemic logic. In: Proceedings of Twelfth KR. AAAI Press (2010)

    Google Scholar 

  5. Aucher, G.: DEL-sequents for regression and epistemic planning. Forthcoming in Journal of Applied Non-Classical Logics (2012)

    Google Scholar 

  6. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., De Lima, T.: Knowable as known after an announcement. Review of Symbolic Logic 1(3), 305–334 (2008)

    Article  MATH  Google Scholar 

  7. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Proceedings of the 7th TARK, pp. 43–56 (1998)

    Google Scholar 

  8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Bozzelli, L., van Ditmarsch, H., French, T., Hales, J., Pinchinat, S.: Refinement modal logic, http://arxiv.org/abs/1202.3538

  10. Browne, M., Clarke, E., Grümberg, O.: Characterizing Kripke Structures in Temporal Logic. In: Ehrig, H., Levi, G., Montanari, U. (eds.) CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 256–270. Springer, Heidelberg (1987)

    Google Scholar 

  11. de Rijke, M.: The modal logic of inequality. Journal of Symbol Logic 57, 566–584 (1992)

    Article  MATH  Google Scholar 

  12. Economou, P.: Extensions and Applications of Dynamic Epistemic Logic. PhD thesis, Oxford University (2010)

    Google Scholar 

  13. Fine, K.: Propositional quantifiers in modal logic. Theoria 36(3), 336–346 (1970)

    Article  MathSciNet  Google Scholar 

  14. Fitch, F.B.: A logical analysis of some value concepts. The Journal of Symbolic Logic 28(2), 135–142 (1963)

    Article  MathSciNet  Google Scholar 

  15. French, T.: Bisimulation quantifiers for modal logic. PhD thesis, University of Western Australia (2006)

    Google Scholar 

  16. French, T., van Ditmarsch, H.: Undecidability for arbitrary public announcement logic. In: Advances in Modal Logic 7, pp. 23–42. College Publications (2008)

    Google Scholar 

  17. Goldblatt, R.: Axiomatising the Logic of Computer Programming. Springer (1982)

    Google Scholar 

  18. Hales, J.: Refinement quantifiers for logics of belief and knowledge. Honours Thesis, University of Western Australia (2011)

    Google Scholar 

  19. Hales, J., French, T., Davies, R.: Refinement quantified logics of knowledge. Electr. Notes Theor. Comput. Sci. 278, 85–98 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hollenberg, M.: Logic and bisimulation. PhD thesis, University of Utrecht (1998)

    Google Scholar 

  21. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta Informaticae 63, 185–219 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Kooi, B.: Knowledge, Chance, and Change. PhD thesis, University of Groningen, ILLC Dissertation Series DS-2003-01 (2003)

    Google Scholar 

  23. Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4, 536–559 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Lima, T.: Alternating-Time Temporal Announcement Logic. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp. 105–121. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation 12(1), 149–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Plaza, J.A.: Logics of public communications. In: Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems: Poster Session Program, pp. 201–216. Oak Ridge National Laboratory (1989)

    Google Scholar 

  27. van Benthem, J.: Games in dynamic epistemic logic. Bulletin of Economic Research 53(4), 219–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. van Benthem, J.: What one may come to know. Analysis 64(2), 95–105 (2004)

    Article  MATH  Google Scholar 

  29. van Benthem, J.: An Essay on Sabotage and Obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. van der Hoek, W., Wooldridge, M.J.: Tractable multiagent planning for epistemic goals. In: Proceedings of the First AAMAS, pp. 1167–1174. ACM (2002)

    Google Scholar 

  31. van Ditmarsch, H., French, T.: Simulation and Information: Quantifying over Epistemic Events. In: Meyer, J.-J.C., Broersen, J.M. (eds.) KRAMAS 2008. LNCS (LNAI), vol. 5605, pp. 51–65. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. van Ditmarsch, H., French, T., Pinchinat, S.: Future event logic - axioms and complexity. In: Advances in Modal Logic, vol. 8, pp. 77–99. College Publications (2010)

    Google Scholar 

  33. van Ditmarsch, H., van der Hoek, W., Iliev, P.: Everything is knowable – how to get to know whether a proposition is true. Theoria 78(2), 93–114 (2012)

    Article  Google Scholar 

  34. Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group Preprint Series 161, Department of Philosophy, Utrecht University (1996)

    Google Scholar 

  35. Wen, X., Liu, H., Huang, F.: An Alternative Logic for Knowability. In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS (LNAI), vol. 6953, pp. 342–355. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Ditmarsch, H. (2012). Quantifying Notes. In: Ong, L., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science, vol 7456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32621-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32621-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32620-2

  • Online ISBN: 978-3-642-32621-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics