We review several logics with propositional quantification.


Modal Logic Action Model Epistemic State Accessibility Relation Propositional Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågotnes, T.: Action and knowledge in alternating-time temporal logic. Synthese 149(2), 377–409 (2006)CrossRefGoogle Scholar
  2. 2.
    Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. Journal of Applied Logic 8, 62–81 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ågotnes, T., van Ditmarsch, H.: Coalitions and announcements. In: Proceedings of 7th AAMAS, pp. 673–680. IFAAMAS (2008)Google Scholar
  4. 4.
    Aucher, G.: Characterizing updates in dynamic epistemic logic. In: Proceedings of Twelfth KR. AAAI Press (2010)Google Scholar
  5. 5.
    Aucher, G.: DEL-sequents for regression and epistemic planning. Forthcoming in Journal of Applied Non-Classical Logics (2012)Google Scholar
  6. 6.
    Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., De Lima, T.: Knowable as known after an announcement. Review of Symbolic Logic 1(3), 305–334 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Proceedings of the 7th TARK, pp. 43–56 (1998)Google Scholar
  8. 8.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  9. 9.
    Bozzelli, L., van Ditmarsch, H., French, T., Hales, J., Pinchinat, S.: Refinement modal logic,
  10. 10.
    Browne, M., Clarke, E., Grümberg, O.: Characterizing Kripke Structures in Temporal Logic. In: Ehrig, H., Levi, G., Montanari, U. (eds.) CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 256–270. Springer, Heidelberg (1987)Google Scholar
  11. 11.
    de Rijke, M.: The modal logic of inequality. Journal of Symbol Logic 57, 566–584 (1992)zbMATHCrossRefGoogle Scholar
  12. 12.
    Economou, P.: Extensions and Applications of Dynamic Epistemic Logic. PhD thesis, Oxford University (2010)Google Scholar
  13. 13.
    Fine, K.: Propositional quantifiers in modal logic. Theoria 36(3), 336–346 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fitch, F.B.: A logical analysis of some value concepts. The Journal of Symbolic Logic 28(2), 135–142 (1963)MathSciNetCrossRefGoogle Scholar
  15. 15.
    French, T.: Bisimulation quantifiers for modal logic. PhD thesis, University of Western Australia (2006)Google Scholar
  16. 16.
    French, T., van Ditmarsch, H.: Undecidability for arbitrary public announcement logic. In: Advances in Modal Logic 7, pp. 23–42. College Publications (2008)Google Scholar
  17. 17.
    Goldblatt, R.: Axiomatising the Logic of Computer Programming. Springer (1982)Google Scholar
  18. 18.
    Hales, J.: Refinement quantifiers for logics of belief and knowledge. Honours Thesis, University of Western Australia (2011)Google Scholar
  19. 19.
    Hales, J., French, T., Davies, R.: Refinement quantified logics of knowledge. Electr. Notes Theor. Comput. Sci. 278, 85–98 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hollenberg, M.: Logic and bisimulation. PhD thesis, University of Utrecht (1998)Google Scholar
  21. 21.
    Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta Informaticae 63, 185–219 (2004)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kooi, B.: Knowledge, Chance, and Change. PhD thesis, University of Groningen, ILLC Dissertation Series DS-2003-01 (2003)Google Scholar
  23. 23.
    Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4, 536–559 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    de Lima, T.: Alternating-Time Temporal Announcement Logic. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp. 105–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation 12(1), 149–166 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Plaza, J.A.: Logics of public communications. In: Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems: Poster Session Program, pp. 201–216. Oak Ridge National Laboratory (1989)Google Scholar
  27. 27.
    van Benthem, J.: Games in dynamic epistemic logic. Bulletin of Economic Research 53(4), 219–248 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    van Benthem, J.: What one may come to know. Analysis 64(2), 95–105 (2004)zbMATHCrossRefGoogle Scholar
  29. 29.
    van Benthem, J.: An Essay on Sabotage and Obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    van der Hoek, W., Wooldridge, M.J.: Tractable multiagent planning for epistemic goals. In: Proceedings of the First AAMAS, pp. 1167–1174. ACM (2002)Google Scholar
  31. 31.
    van Ditmarsch, H., French, T.: Simulation and Information: Quantifying over Epistemic Events. In: Meyer, J.-J.C., Broersen, J.M. (eds.) KRAMAS 2008. LNCS (LNAI), vol. 5605, pp. 51–65. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    van Ditmarsch, H., French, T., Pinchinat, S.: Future event logic - axioms and complexity. In: Advances in Modal Logic, vol. 8, pp. 77–99. College Publications (2010)Google Scholar
  33. 33.
    van Ditmarsch, H., van der Hoek, W., Iliev, P.: Everything is knowable – how to get to know whether a proposition is true. Theoria 78(2), 93–114 (2012)CrossRefGoogle Scholar
  34. 34.
    Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group Preprint Series 161, Department of Philosophy, Utrecht University (1996)Google Scholar
  35. 35.
    Wen, X., Liu, H., Huang, F.: An Alternative Logic for Knowability. In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS (LNAI), vol. 6953, pp. 342–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans van Ditmarsch
    • 1
    • 2
  1. 1.University of SevilleSpain
  2. 2.IMScChennaiIndia

Personalised recommendations