On Distributed Monitoring of Asynchronous Systems

  • Volker Diekert
  • Anca Muscholl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7456)

Introduction

Distributed systems are notoriously difficult to understand and analyze in order to assert their correction w.r.t. given properties. They often exhibit a huge number of different behaviors, as soon as the active entities (peers, agents, processes, . . . ) behave in an asynchronous manner. Already the modelization of such systems is a non-trivial task, let alone their formal verification.

Keywords

Boolean Algebra Reachable State Countable Union Asynchronous System Real Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of Real-Time Properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4) (2011)Google Scholar
  3. 3.
    Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of randomization in finite state monitors. J. ACM 56(5) (2009)Google Scholar
  4. 4.
    Diekert, V., Gastin, P.: Local safety and local liveness for distributed systems. In: Perspectives in Concurrency Theory, pp. 86–106. IARCS-Universities (2009)Google Scholar
  5. 5.
    Diekert, V., Muscholl, A.: Deterministic asynchronous automata for infinite traces. Acta Informatica 31, 379–397 (1994)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)Google Scholar
  7. 7.
    Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154(3), 67–84 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gastin, P., Petit, A.: Infinite traces. In: Diekert, V., Rozenberg, G. (eds.) The Book of Traces. World Scientific (1995)Google Scholar
  9. 9.
    Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-Type Construction of Deterministic Asynchronous Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 52–63. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gondi, K., Patel, Y., Prasad Sistla, A.: Monitoring the Full Range of ω-Regular Properties of Stochastic Systems. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 105–119. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Keller, R.M.: Parallel program schemata and maximal parallelism I. Fundamental results. Journal of the Association of Computing Machinery 20(3), 514–537 (1973)MATHCrossRefGoogle Scholar
  12. 12.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78. Aarhus University, Aarhus (1977)Google Scholar
  13. 13.
    McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Information & Control 9, 521–530 (1966)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: 18th Symposium on Foundations of Computer Science, pp. 46–57 (1977)Google Scholar
  15. 15.
    Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Ştefănescu, A., Esparza, J., Muscholl, A.: Synthesis of Distributed Algorithms Using Asynchronous Automata. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 27–41. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications 21, 99–135 (1987)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Diekert
    • 1
  • Anca Muscholl
    • 2
  1. 1.Universität Stuttgart, FMIGermany
  2. 2.LaBRI, Univ. of BordeauxFrance

Personalised recommendations