Standard Completeness for Extensions of MTL: An Automated Approach

  • Paolo Baldi
  • Agata Ciabattoni
  • Lara Spendier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7456)

Abstract

We provide general conditions on hypersequent calculi that guarantee standard completeness for the formalized logics. These conditions are implemented in the PROLOG system AxiomCalc that takes as input any suitable axiomatic extension of Monoidal T-norm Logic MTL and outputs a hypersequent calculus for the logic and the result of the check. Our approach subsumes many existing results and allows for the computerized discovery of new fuzzy logics.

Keywords

Fuzzy Logic Propositional Variable Proof Theory Sequent Rule Axiomatic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., et al. (eds.) Logic: From Foundations to Applications. Proc. Logic Colloquium, Keele, UK, pp. 1–32 (1993, 1996)Google Scholar
  2. 2.
    Baaz, M., Zach, R.: Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Ciabattoni, A., Galatos, N., Terui, K.: MacNeille Completions of FL-algebras. Algebra Universalis 66(4), 405–420 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Proceedings of LICS 2008, pp. 229–240 (2008)Google Scholar
  5. 5.
    Ciabattoni, A., Esteva, F., Godo, L.: T-norm based logics with n-contraction. Neural Network World 12(5), 441–453 (2002)Google Scholar
  6. 6.
    Ciabattoni, A., Metcalfe, G.: Density elimination. Theor. Comput. Sci. 403(2-3), 328–346 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Esteva, F., Gispert, J., Godo, L., Montagna, F.: On the Standard and Rational Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic. Studia Logica 71(2), 199–226 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: an algebraic glimpse at substructural logics. Studies in Logics and the Foundations of Mathematics. Elsevier (2007)Google Scholar
  10. 10.
    Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s MTL logic. Studia Logica 70(2), 183–192 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer (1998)Google Scholar
  12. 12.
    Horcik, R.: Alternative Proof of Standard Completeness Theorem for MTL. Soft Computing 11(2) (2006)Google Scholar
  13. 13.
    Metcalfe, G., Montagna, F.: Substructural fuzzy logics. Journal of Symbolic Logic 7(3), 834–864 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer Series in Applied Logic, vol. 36 (2008)Google Scholar
  15. 15.
    Montagna, F., Ono, H.: Kripke semantics, undecidability and standard completeness for Esteva and Godo’s logic MTL∀. Studia Logica 71(2), 227–245 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ono, H., Komori, K.: Logics without the contraction rule. Journal of Symbolic Logic 50, 169–201 (1985)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic 49(3), 851–866 (1984)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo Baldi
    • 1
  • Agata Ciabattoni
    • 1
  • Lara Spendier
    • 1
  1. 1.Technische Universität WienAustria

Personalised recommendations