Skip to main content

A Framework for Planetary Geologic Mapping

  • Chapter
  • First Online:
Cartography from Pole to Pole

Part of the book series: Lecture Notes in Geoinformation and Cartography ((ICA))

  • 1171 Accesses

Abstract

Archives of published planetary maps hosted at the United States Geological Survey or other facilities consist of a large number of small to large-scale geologic maps of terrestrial planets, in particular the Moon and Mars. Along with recent and upcoming missions also to Mercury, the Outer Solar System moons, and asteroids systematic mapping of surfaces has received new impulses. As planetary geologic mapping today is performed by individual scientists not only in the US but also in Europe with dedicates mission programs and participations (ESA Mars Express, ESAJUICE, …) a general framework of mapping and in particular for organizing cartographic output is paramount. This work presented here provides a general overview of cartographic and data requirements in the context of collaborative mapping programs and establishes an innovative data framework that allows data integration, management and access in order to support communication of scientific results across disciplines and the public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batson R, Whitaker E, Wilhelms S (1990) History of planetary cartography. In: Greeley R, Batson R (eds) Planetary mapping. Cambridge planetary science series, vol 6, Cambridge University Press, New York, p 12–59

    Google Scholar 

  • Bleamaster L, Crown D (2010) Geologic map of MTM -40277, -45277, -40272, and -45272 quadrangles, eastern Hellas Planitiaregion of Mars. U.S. Geological Survey Scientific Investigations Map 3096, scale1:15,000,000, p 11

    Google Scholar 

  • Buchroithner M (1999) Mars map—the first of the series of multilingual relief maps of terrestrial planets and their moons. 19thICA/ACI, Ottawa, Canada, p 1–3

    Google Scholar 

  • Carpendale MST (2003) Considering visual variables as a basis for information visualization. Research report 2001-693-16, Department of Computer science, University of Calgary, Calgary

    Google Scholar 

  • Chapman M (1999) Geologic/Geomorphic map of the Galindo quadrangle (V–40), Venus. U.S Geological Survey Scientific Investigations Map 2613, scale 1:5,000,000, p 13

    Google Scholar 

  • Freire J, Siméon J (2003) Adaptive XML shredding: architecture implementation and challenges. University of Toronto, Toronto

    Google Scholar 

  • Haber R, McNabb D (1990) Visualization idioms: a conceptual model for scientific visualization systems. In: Shriver B, Neilson GM, Rosenblum L (eds) Visualization in scientific computing. IEEE Computer Society Press, New York, p 74–93

    Google Scholar 

  • Hake G, Grünreich D, Meng L (2002) Kartographie—visualisierung raum- zeitlicher informationen, 8th edn. Walter deGruyter, Berlin

    Google Scholar 

  • Hargitai H (2006) Planetary maps: visualization and nomenclature. Cartographica 41(2):149–167. doi:10.3138/9862-21JU-4021-72M3

    Article  Google Scholar 

  • IAU (2012) International astronomical union. http://www.iau.org/. Accessed 8 Oct 2012

  • ICA (2003) A strategic plan for the International Cartographic Association 2003–2011. Adopted by the ICA Generally Assembly, Durban South Africa

    Google Scholar 

  • Jaumann R et al (2007) The high resolution stereo camera (HRSC) experiment on mars express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet Space Sci 55(7–8):928–952. doi:10.1016/j.pss.2006.12.003

    Article  Google Scholar 

  • Lehmann H et al (2006) A thematic map of the centauri and hellas montes area, mars. 5th Turkish-German Joint Geodetic Day, Berlin

    Google Scholar 

  • Nass A, van Gasselt S, Jaumann R (2010) Map description and management by spatial metadata: requirements for digital map legend for planetary geological and geomorphological mapping. In: 18th international research symposium on computer-based cartography. AutoCarto 2010, Orlando

    Google Scholar 

  • Nass A et al (2011a) Implementation of cartographic symbols for planetary mapping in geographic information systems. Planet Space Sci 59(11–12):1255–1264, Elsevier Ltd., doi:10.1016/j.pss.2010.08.022

  • Nass A et al (2011b) Requirements for planetary symbology in geographic information systems. In: Ruas A (ed) Advances in cartography and giscience: selection from ICC 2011 lecture notes in geoinformation and cartography, vol 2. Springer, Berlin, p 251–266

    Google Scholar 

  • OMG (2007) MOF 2.0/XMI Mapping, Version 2.1.1. OMG Doc Number: for- mal/2007-12-01. http://www.omg.org/spec/XMI/2.1/PDF

  • Neukum G, Jaumann R, HRSC-Team (2004) The high resolution stereo camera of Mars Express. ESA Special Publication, SP-1240, p 1–19

    Google Scholar 

  • Neukum G et al (2009) HRSC: high resolution stereo camera. ESA Special Publication, SP-1291, p 15–74

    Google Scholar 

  • Planetologia (2012) Planetary cartography. ELTE University Budapest. http://planetologia.elte.hu/. Accessed 16 Oct 2012

  • Roatsch T et al (2006) Mapping of the icy saturnian satellites: first results from cassini-ISS. Planet Space Sci 54(12):1137–1145. doi:10.1016/j.pss.2006.05.032

  • Roatsch T et al (2012) High resolution vesta high altitude mapping orbit (HAMO) atlas derived from Dawn framing camera images. Planet Space Sci 73(1):283–286

    Google Scholar 

  • Seidelmann P et al (2005) Report of the IAU/IAG working group on carto- graphic coordinates and rotational elements: 2003. Celest Mech Dyn Astron 91:83–111

    Article  Google Scholar 

  • Shingareva K, Krasnopevtseva B (2001) Venus map—the series of multilingual maps for terrestrial planets and their moons. In: 20th ICA/ACI, Beijing, China, 5:3279–3284

    Google Scholar 

  • Shingareva K, Krasnpevtseva B, Buchroithner M (2002) Moon map—a new map out of the series of multilingual relief maps of terrestrial planets and their moons. In: Conference GIS for sustainable development of territories. Petersburg, Russia, p 392–395

    Google Scholar 

  • Shingareva K et al (2003) Mercury map—a new map out of the series of multi- lingual relief maps of terrestrial planets and their moon. In: 21th ICA/ACI, Durban, South Africa, p 1551–1554

    Google Scholar 

  • Tanaka K (1994) The venus geologic mappers` handbook, 2nd edn. Open– File Report 94–438, Prepared for the National Aeronautics and Space Administration

    Google Scholar 

  • Tanaka K, Skinner Jr J, Hare T (2010) Planetary geologic mapping handbook – 2010. U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona

    Google Scholar 

  • United Nations (2000) Handbook on geographic information systems and digital mapping. United Nations publication, Studies in Methods, Series FNo. 79, ST/ESA/STAT/SER.F/79, New York

    Google Scholar 

  • USGS (2012) Astrogeology science center. http://astrogeology.usgs.gov/PlanetaryMapping/. Accessed 11 Oct 2012

  • van Gasselt S, Nass A (2011a) Planetary mapping – The data model’s perspective and GIS framework. Planet Space Sci 59(11–12): 1231–1242, Elsevier Ltd., doi:10.1016/j.pss.-2010.09.012

  • van Gasselt S, Nass A (2011b) Planetary map data model for geologic mapping. Cartography Geogr Inf Sci(CaGIS) 38(2):201–212. doi:10.1559/-15230406382201

  • W3C (2003) Scalable Vector Graphic (SVG) 1.1 specification. W3CRecommendation. http://www.w3.org/TR/2003/REC-SVG11-20030114/

  • W3C (2008) Extensible markup language (xml) 1.0, 5th edn. W3C Recommendation. http://www.w3.org/TR/2008/PER-xml-20080205

  • Wilhelms D(1990) Geologic mapping. In: Greeley R, Batson R (eds) Planetary mapping. Cambridge planetary science series, vol 6. Cambridge University Press, Cambridge, p 208–260

    Google Scholar 

  • Wilhelms D, McCauley J (1971) Geologic map of the near side of the Moon. USGS Map I–703, 1:5,000,000, p 26

    Google Scholar 

  • Wilhelms D, McCauley J, Trask N (1987) The geologic history of the Moon. U.S. Geological Survey Professional Paper 1348, United States Government Printing Office, Washington

    Google Scholar 

  • Williams D et al (2011) Geologic map of Io. U.S. Geological Survey Scientific Investigations Map 3168, scale 1:15,000,000, p 25

    Google Scholar 

  • Wood J, Brodlie K, Wright H (1996) Visualization over the world wide web and its application to environmental data. In: Proceedings of the 7th IEEE visualization conference, San Francisco, USA. doi:10.1109/VISUAL.1996.567610

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Naß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naß, A., van Gasselt, S. (2014). A Framework for Planetary Geologic Mapping. In: Buchroithner, M., Prechtel, N., Burghardt, D. (eds) Cartography from Pole to Pole. Lecture Notes in Geoinformation and Cartography(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32618-9_19

Download citation

Publish with us

Policies and ethics