Skip to main content

Colour Saliency on Video

  • Conference paper

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 87)


Much research has been concerned with the notion of bottom-up saliency in visual scenes, i.e. the contribution of low-level image features such as brightness, colour, contrast, and motion to the deployment of attention. Because the human visual system is obviously highly optimized for the real world, it is reasonable to draw inspiration from human behaviour in the design of machine vision algorithms that determine regions of relevance. In previous work, we were able to show that a very simple and generic grayscale video representation, namely the geometric invariants of the structure tensor, predicts eye movements when viewing dynamic natural scenes better than complex, state-of-the-art models. Here, we moderately increase the complexity of our model and compute the invariants for colour videos, i.e. on the multispectral structure tensor and for different colour spaces. Results show that colour slightly improves predictive power.


  • video saliency
  • eye movements
  • intrinsic dimension
  • multispectral structure tensor

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with application to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8), 775–790 (1991)

    CrossRef  Google Scholar 

  2. Dorr, M., Martinetz, T., Gegenfurtner, K., Barth, E.: Variability of eye movements when viewing dynamic natural scenes. Journal of Vision 10(10), 1–17 (2010)

    CrossRef  Google Scholar 

  3. Einhäuser, W., Spain, M., Perona, P.: Objects predict fixations better than early saliency. Journal of Vision 8(14), 11–26 (2008)

    CrossRef  Google Scholar 

  4. Elazary, L., Itti, L.: Interesting objects are visually salient. Journal of Vision 8(3), 1–15 (2008)

    CrossRef  Google Scholar 

  5. Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: Proc. IEEE Conf on Computer Vision and Pattern Recognition, pp. 631–637 (2005)

    Google Scholar 

  6. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    CrossRef  Google Scholar 

  7. Krieger, G., Rentschler, I., Hauske, G., Schill, K., Zetzsche, C.: Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. Spatial Vision 13(2,3), 201–214 (2000)

    CrossRef  Google Scholar 

  8. Le Meur, O., Le Callet, P., Barba, D., Thoreau, D.: A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 802–817 (2006)

    CrossRef  Google Scholar 

  9. Mota, C., Stuke, I., Barth, E.: The Intrinsic Dimension of Multispectral Images. In: MICCAI Workshop on Biophotonics Imaging for Diagnostics and Treatment, pp. 93–100 (2006)

    Google Scholar 

  10. Reinagel, P., Zador, A.M.: Natural scene statistics at the centre of gaze. Network: Computation in Neural Systems 10, 341–350 (1999)

    CrossRef  MATH  Google Scholar 

  11. Vig, E., Dorr, M., Barth, E.: Efficient visual coding and the predictability of eye movements on natural movies. Spatial Vision 22(5), 397–408 (2009)

    CrossRef  Google Scholar 

  12. Vig, E., Dorr, M., Martinetz, T., Barth, E.: A Learned Saliency Predictor for Dynamic Natural Scenes. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 52–61. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  13. Zhang, L., Tong, M.H., Cottrell, G.W.: SUNDAy: Saliency Using Natural Statistics for Dynamic Analysis of Scenes. In: Proceedings of the 31st Annual Cognitive Science Conference, Amsterdam, Netherlands (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Dorr, M., Vig, E., Barth, E. (2012). Colour Saliency on Video. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)