Information Rates of Active Propagation in Microchannel Molecular Communication

  • Nariman Farsad
  • Andrew W. Eckford
  • Satoshi Hiyama
  • Yuki Moritani
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 87)

Abstract

Molecular communication is a promising technique for microchannel systems. In this paper, various microchannel molecular communication schemes are simulated and analyzed using information theory, including molecular motors and Brownian motion with drift. Results suggest Brownian motion with drift can deliver excellent performance, depending on the drift velocity.

Keywords

Molecular communication microchannels information theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiyama, S., Moritani, Y.: Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems. Nano Communicaiton Networks 1, 20–30 (2010)CrossRefGoogle Scholar
  2. 2.
    Moritani, Y., Hiyama, S., Suda, T.: Molecular communication for health care applications. In: Proc. 4th IEEE Intl. Conf. on Pervasive Computing and Communications Workshops, Pisa, Italy (2006)Google Scholar
  3. 3.
    Eckford, A.W.: Nanoscale communication with Brownian motion. In: Proc. Conf. on Information Sciences and Systems, Baltimore, MD, pp. 160–165 (2007)Google Scholar
  4. 4.
    Atakan, B., Akan, O.: An information theoretical approach for molecular communication. In: Proc. 2nd Intl. Conf. on Bio-Inspired Models of Network, Information, and Computing Systems, Budapest, Hungary (2007)Google Scholar
  5. 5.
    Moore, M.J., Suda, T., Oiwa, K.: Molecular communication: Modeling noise effects on information rate. IEEE Trans. Nanobiosci. 8, 169–179 (2009)CrossRefGoogle Scholar
  6. 6.
    Eckford, A.W.: Timing information rates for active transport molecular communication. In: Proc. 4th Intl. Conf. on Nano-Networks, Luzern, Switzerland, pp. 24–28 (2009)Google Scholar
  7. 7.
    Pierobon, M., Akyildiz, I.F.: A physical end-to-end model for molecular communication in nanonetworks. IEEE J. Sel. Areas in Commun. 28(4), 602–611 (2010)CrossRefGoogle Scholar
  8. 8.
    Eckford, A.W., et al.: Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: IEEE Intl. Conf. on Nanotechnology, Seoul, South Korea (2010)Google Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)MATHGoogle Scholar
  10. 10.
    Hiyama, S., et al.: Biomolecular-motor-based nano- or microscale particle translocations on DNA microarrays. Nano Lett. 9(6), 2407–2413 (2009)CrossRefGoogle Scholar
  11. 11.
    Berthier, J.: Microfluidics for Biotechnology. Artech House, Boston (2006)Google Scholar
  12. 12.
    Nitta, T., et al.: Simulating molecular shuttle movements: Towards computer-aided design of nanoscale transport systems. Lab on a Chip 6, 881–885 (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Nariman Farsad
    • 1
  • Andrew W. Eckford
    • 1
  • Satoshi Hiyama
    • 2
  • Yuki Moritani
    • 2
  1. 1.Dept. of Computer Science and EngineeringYork UniversityTorontoCanada
  2. 2.Research LaboratoriesNTT DOCOMO Inc.YokosukaJapan

Personalised recommendations