Advertisement

Answer Set Programming via Controlled Natural Language Processing

  • Rolf Schwitter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7427)

Abstract

Controlled natural languages are subsets of natural languages that can be used to describe a problem in a very precise way, furthermore they can often be translated automatically into a formal notation. We investigate in this paper how a controlled natural language can be used as a specification language for Answer Set Programming (ASP). ASP is a declarative approach to problem solving and has its roots in knowledge representation, logic programming, and constraint satisfaction. Solutions of ASP programs are stable models (= answer sets) that build the starting point for question answering. As a proof of concept, we translate a problem specification written in controlled natural language into an ASP program and compute a stable model that contains the answers to a number of questions.

Keywords

answer set programming controlled natural language processing model-based problem solving knowledge representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  2. 2.
    Baral, C., Dzifcak, J.: Solving Puzzles Described in English by Automated Translation to Answer Set Programming and Learning How to Do that Translation. In: Proceedings of KR 2012, pp. 573–577 (2012)Google Scholar
  3. 3.
    Bernardi, R., Calvanese, D., Thorne, C.: Lite Natural Language. In: Proceedings IWCS-7 (2007)Google Scholar
  4. 4.
    Blackburn, P., Bos, J.: Representation and Inference for Natural Language. A First Course in Computational Semantics. CSLI Publications (2005)Google Scholar
  5. 5.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer Set Programming at a Glance. Communications of the ACM 54(12) (December 2011)Google Scholar
  6. 6.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)CrossRefGoogle Scholar
  7. 7.
    Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.: Acquiring and Using World Knowledge using a Restricted Subset of English. In: The 18th International FLAIRS Conference (FLAIRS 2005), pp. 506–511 (2005)Google Scholar
  8. 8.
    Clocksin, W.F., Mellish, C.S.: Programming in Prolog: Using the ISO Standard, 5th edn. Springer, Heidelberg (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2008. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 104–124. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proceedings of IJCAI, pp. 386–392 (2007)Google Scholar
  12. 12.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 107–124 (2011)MathSciNetMATHGoogle Scholar
  13. 13.
    Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo Series 3. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 345–351. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th ICLP, pp. 1070–1080 (1988)Google Scholar
  15. 15.
    Gueret, C., Prins, C., Sevaux, M.: Programmation linéaire, 65 problèmes d’optimisation modélisés et résolus avec Visual Xpress, Eyrolles (October 2000)Google Scholar
  16. 16.
    Gunning, D., Chaudhri, V.K., Clark, P., Barker, K., Chaw, S.-Y., Greaves, M., Grosof, B., Leung, A., McDonald, D., Mishra, S., Pacheco, J., Porter, B., Spaulding, A., Tecuci, D., Tien, J.: Project Halo Update–Progress Toward Digital Aristotle. AI Magazine 31(3), 33–58 (2010)Google Scholar
  17. 17.
    Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)CrossRefGoogle Scholar
  18. 18.
    Kuhn, T.: Controlled English for Knowledge Representation. Doctoral Thesis. Faculty of Economics, Business Administration and Information Technology of the University of Zurich (2010)Google Scholar
  19. 19.
    Lifschitz, V.: Answer Set Programming and Plan Generation. Artificial Intelligence 138, 39–54 (2002)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lifschitz, V.: What Is Answer Set Programming? In: Proceedings of AAAI 2008, vol. 3, pp. 1594–1597 (2008)Google Scholar
  21. 21.
    Lloyd, J.: Foundations of Logic Programming. Springer (1987)Google Scholar
  22. 22.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V., Truszczyński, M., Warren, D.S. (eds.) The Logic Programming Paradigm: a 25-Year Perspective, pp. 169–181. Springer (1999)Google Scholar
  23. 23.
    Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140 (1978)Google Scholar
  24. 24.
    Schwitter, R., Ljungberg, A., Hood, D.: ECOLE – A Look-ahead Editor for a Controlled Language. In: Proceedings of EAMT-CLAW 2003, pp. 141–150 (2003)Google Scholar
  25. 25.
    Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A Comparison of three Controlled Natural Languages for OWL 1.1. In: 4th International Workshop on OWL Experiences and Directions, Washington, USA, April 1-2 (2008)Google Scholar
  26. 26.
    Schwitter, R.: Controlled Natural Language for Knowledge Representation. In: Proceedings of COLING 2010, pp. 1113–1121 (2010)Google Scholar
  27. 27.
    White, C., Schwitter, R.: An Update on PENG Light. In: Pizzato, L., Schwitter, R. (eds.) Proceedings of ALTA 2009, pp. 80–88 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rolf Schwitter
    • 1
  1. 1.Centre for Language TechnologyMacquarie UniversitySydneyAustralia

Personalised recommendations