Advertisement

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners

  • José I. Aliaga
  • Manuel F. Dolz
  • Alberto F. Martín
  • Rafael Mayo
  • Enrique S. Quintana-Ortí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7453)

Abstract

We analyze the energy-performance balance of a task-parallel computation of an ILU-based preconditioner for the solution of sparse linear systems on multi-core processors. In particular, we elaborate a theoretical model for the power dissipation, and employ it to explore the effect of the processor power states on the time-power-energy interaction for this calculation. Armed with the insights gained from this study, we then introduce two energy-saving mechanisms which, incorporated into the runtime in charge of the parallel execution of the algorithm, improve energy efficiency by 6.9%, with a negligible impact on performance.

Keywords

Execution Time Sparse Linear System Inactive Period Nest Dissection Linear Algebra Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53, 86–96 (2010)CrossRefGoogle Scholar
  2. 2.
    Aliaga, J.I., Bollhöfer, M., Martín, A.F., Quintana-Ortí, E.S.: Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Parallel Computing 37(3), 183–202 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    AnandTech Forums. Power-consumption scaling with clockspeed and Vcc for the i7-2600K (2011), http://forums.anandtech.com/showthread.php?t=2195927
  4. 4.
    Feng, W.-C., Feng, X., Ge, R.: Green supercomputing comes of age. IT Professional 10(1), 17–23 (2008)CrossRefGoogle Scholar
  5. 5.
    Freeh, V.W., Lowenthal, D.K., Pan, F., Kappiah, N., Springer, R., Rountree, B.L., Femal, M.E.: Analyzing the energy-time trade-off in high-performance computing applications. IEEE Trans. Parallel Distrib. Syst. 18, 835–848 (2007)CrossRefGoogle Scholar
  6. 6.
    Gupta, V., Brett, P., Koufaty, D., Reddy, D., Hahn, S., Schwan, K., Srinivasa, G.: The forgotten ’uncore’: On the energy-efficiency of heterogeneous cores. In: Proc. 2012 USENIX Annual Technical Conference (to appear, 2012)Google Scholar
  7. 7.
    HP Corp., Intel Corp., Microsoft Corp., Phoenix Tech. Ltd., and Toshiba Corp. Advanced configuration and power interface specification, revision 5.0 (2011)Google Scholar
  8. 8.
    Dongarra, J., et al.: The international ExaScale software project roadmap. Int. J. of High Performance Computing & Applications 25(1), 3–60Google Scholar
  9. 9.
    Duranton, M., et al.: The HiPEAC vision (2010), http://www.hipeac.net/roadmap
  10. 10.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM Publications (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José I. Aliaga
    • 1
  • Manuel F. Dolz
    • 1
  • Alberto F. Martín
    • 2
  • Rafael Mayo
    • 1
  • Enrique S. Quintana-Ortí
    • 1
  1. 1.Dpto. de Ingeniería y Ciencia de ComputadoresUniversitat Jaume ICastellónSpain
  2. 2.Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)CastelldefelsSpain

Personalised recommendations