Skip to main content

Learning to Rank from Concept-Drifting Network Data Streams

  • Conference paper
Database and Expert Systems Applications (DEXA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7446))

Included in the following conference series:

  • 844 Accesses

Abstract

Networked data are, nowadays, collected in various application domains such as social networks, biological networks, sensor networks, spatial networks, peer-to-peer networks etc. Recently, the application of data stream mining to networked data, in order to study their evolution over time, is receiving increasing attention in the research community. Following this main stream of research, we propose an algorithm for mining ranking models from networked data which may evolve over time. In order to properly deal with the concept drift problem, the algorithm exploits an ensemble learning approach which allows us to weight the importance of learned ranking models from past data when ranking new data. Learned models are able to take the network autocorrelation into account, that is, the statistical dependency between the values of the same attribute on related nodes. Empirical results prove the effectiveness of the proposed algorithm and show that it performs better than other approaches proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiolli, F.: A preference model for structured supervised learning tasks. In: ICDM, pp. 557–560. IEEE Computer Society (2005)

    Google Scholar 

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont (1984)

    MATH  Google Scholar 

  3. Crammer, K., Singer, Y.: Pranking with ranking. In: NIPS, pp. 641–647. MIT Press (2001)

    Google Scholar 

  4. Dembczyski, K., Kotlowski, W., Slowiski, R., Szelag, M.: Learning of rule ensembles for multiple attribute ranking problems. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 217–247. Springer (2010)

    Google Scholar 

  5. Doyle, J.: Prospects for preferences. Computational Intelligence 20(2), 111–136 (2004)

    Article  MathSciNet  Google Scholar 

  6. Draper, N.R., Smith, H.: Applied regression analysis. Wiley series in probability and mathematical statistics. Wiley, New York (1996)

    Google Scholar 

  7. Draper, N.R., Smith, H.: Applied regression analysis. John Wiley & Sons (1982)

    Google Scholar 

  8. Har-Peled, S., Roth, D., Zimak, D.: Constraint Classification: A New Approach to Multiclass Classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classification and ranking. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 785–792 (2003)

    Google Scholar 

  10. Herbrich, R., Graepel, T., Bollmann-sdorra, P., Obermayer, K.: Learning preference relations for information retrieval (1998)

    Google Scholar 

  11. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. MIT Press (2000)

    Google Scholar 

  12. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational learning. In: Proc. 9th Intl. Conf. on Machine Learning, pp. 259–266. Morgan Kaufmann (2002)

    Google Scholar 

  13. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002)

    Chapter  Google Scholar 

  14. Karalic, A.: Linear regression in regression tree leaves. In: Proceedings of ECAI 1992, pp. 440–441. John Wiley & Sons (1992)

    Google Scholar 

  15. Lubinsky, D.: Tree structured interpretable regression. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data. Lecture Notes in Statistics. Springer (1994)

    Google Scholar 

  16. Macchia, L., Ceci, M., Malerba, D.: Mining Ranking Models from Dynamic Network Data. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 566–577. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Malerba, D., Esposito, F., Ceci, M., Appice, A.: Top-down induction of model trees with regression and splitting nodes. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 612–625 (2004)

    Article  Google Scholar 

  18. Neville, J., Simsek, O., Jensen, D.: Autocorrelation and relational learning: Challenges and opportunities. In: Wshp. Statistical Relational Learning (2004)

    Google Scholar 

  19. Newman, M.E.J., Watts, D.J.: The structure and dynamics of networks. Princeton University Press (2006)

    Google Scholar 

  20. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  21. Robinson, W.S.: Ecological Correlations and the Behavior of Individuals. American Sociological Review 15(3), 351–357 (1950)

    Article  Google Scholar 

  22. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network Regression with Predictive Clustering Trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 333–348. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 377–382. ACM, New York (2001)

    Chapter  Google Scholar 

  24. Swanson, B.J.: Autocorrelated rates of change in animal populations and their relationship to precipitation. Conservation Biology 12(4), 801–808 (1998)

    Article  MathSciNet  Google Scholar 

  25. Tesauro, G.: Connectionist learning of expert preferences by comparison training. In: Advances in Neural Information Processing Systems 1, pp. 99–106. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  26. Torgo, L.: Functional models for regression tree leaves. In: Fisher, D.H. (ed.) ICML, pp. 385–393. Morgan Kaufmann (1997)

    Google Scholar 

  27. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 226–235. ACM, New York (2003)

    Chapter  Google Scholar 

  28. Wang, H., Yin, J., Pei, J., Yu, P.S., Yu, J.X.: Suppressing model overfitting in mining concept-drifting data streams. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 736–741. ACM, New York (2006)

    Chapter  Google Scholar 

  29. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning. Springer (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macchia, L., Ceci, M., Malerba, D. (2012). Learning to Rank from Concept-Drifting Network Data Streams. In: Liddle, S.W., Schewe, KD., Tjoa, A.M., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2012. Lecture Notes in Computer Science, vol 7446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32600-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32600-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32599-1

  • Online ISBN: 978-3-642-32600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics