Skip to main content

Automated Extraction of Semantic Concepts from Semi-structured Data: Supporting Computer-Based Education through the Analysis of Lecture Notes

  • Conference paper
Database and Expert Systems Applications (DEXA 2012)

Abstract

Computer-based educational approaches provide valuable supplementary support to traditional classrooms. Among these approaches, intelligent learning systems provide automated questions, answers, feedback, and the recommendation of further resources. The most difficult task in intelligent system formation is the modelling of domain knowledge, which is traditionally undertaken manually or semi-automatically by knowledge engineers and domain experts. However, this error-prone process is time-consuming and the benefits are confined to an individual discipline. In this paper, we propose an automated solution using lecture notes as our knowledge source to utilise across disciplines. We combine ontology learning and natural language processing techniques to extract concepts and relationships to produce the knowledge representation. We evaluate this approach by comparing the machine-generated vocabularies to terms rated by domain experts, and show a measurable improvement over existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carbonell, J.R.: AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted Instruction. IEEE Transactions on Man-machine Systems 11(4), 190–202 (1970)

    Article  Google Scholar 

  2. McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task sequencing in an intelligent tutor for basic algebra. RAND Note 17(4), 281–307 (1988)

    Google Scholar 

  3. Butz, C.J., Hua, S., Maguire, R.B.: A Web-Based Intelligent Tutoring System for Computer Programming. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 159–165. IEEE Computer Society, USA (2004)

    Chapter  Google Scholar 

  4. Stankov, S., Rosic, M., Itko, B., Grubisic, A.: TEx-Sys model for building intelligent tutoring systems. Computer and Education 51(3), 1017–1036 (2008)

    Article  Google Scholar 

  5. Zitko, B., Stankov, S., Rosic, M., Grubisic, A.: Dynamic test generation over ontology-based knowledge representation in authoring shell. Expert Systems with Applications 36(4), 8185–8196 (2009)

    Article  Google Scholar 

  6. Zhuge, H., Li, Y.: KGTutor: A Knowledge Grid Based Intelligent Tutoring System. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 473–478. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Issa, R., Arciszewski, T.: Ontology: An Introduction, Teaching Modules (PowerPoint presentation). In: ASCE Global Center of Excellence in Computing (2011)

    Google Scholar 

  8. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In: North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 252–259. Association for Computational Linguistics, Canada (2003)

    Google Scholar 

  9. The Stanford NLP (Natural Language Processing) Group, http://nlp.stanford.edu/software/corenlp.shtml

  10. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  11. Hsieh, S., Lin, H., Chi, N., Chou, K., Lin, K.: Enabling the development of base domain ontology through extraction of knowledge from engineering domain handbooks. Advanced Engineering Informatics 25, 288–296 (2011)

    Article  Google Scholar 

  12. Gantayat, N., Iyer, S.: Automated building of domain ontologies from lecture notes in courseware. In: IEEE International Conference on Technology for Education, pp. 89–95. IIT Madras, India (2011)

    Chapter  Google Scholar 

  13. Ono, M., Harada, F., Shimakawa, H.: Semantic Network to Formalize Learning Items from Lecture Notes. International Journal of Advanced Computer Science 1(1), 10–15 (2011)

    Google Scholar 

  14. HaCohen-Kerner, Y., Gross, Z., Masa, A.: Automatic Extraction and Learning of Keyphrases from Scientific Articles. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 657–669. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Rezgui, Y.: Text-based domain ontology building using tf-idf and metric clusters techniques. The Knowledge Engineering Review 22(4), 379–403 (2007)

    Article  Google Scholar 

  16. Chen, N., Kinsuk, Wei, C., Chen, H.: Mining e-Learning Domain Concept Map from Academic Articles. In: Sixth International Conference on Advanced Learning Technologies, pp. 694–698. IEEE Computer Society, Netherlands (2006)

    Chapter  Google Scholar 

  17. Apache POI- the Java API for Microsoft Documents, http://poi.apache.org/

  18. Brown Corpus, http://en.wikipedia.org/wiki/Brown_Corpus

  19. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer, New York (2006)

    Google Scholar 

  20. Understanding the PowerPoint MS-PPT Binary File Format, http://msdn.microsoft.com/en-us/library/gg615594.aspx#UnderstandMS_PPT_Overview

  21. Hripcsak, G., Rothschild, A.S.: Agreement, the F-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atapattu, T., Falkner, K., Falkner, N. (2012). Automated Extraction of Semantic Concepts from Semi-structured Data: Supporting Computer-Based Education through the Analysis of Lecture Notes. In: Liddle, S.W., Schewe, KD., Tjoa, A.M., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2012. Lecture Notes in Computer Science, vol 7446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32600-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32600-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32599-1

  • Online ISBN: 978-3-642-32600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics