All-Visible-k-Nearest-Neighbor Queries

  • Yafei Wang
  • Yunjun Gao
  • Lu Chen
  • Gang Chen
  • Qing Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7447)


The All-k-Nearest-Neighbor (AkNN) operation is common in many applications such as GIS and data analysis/mining. In this paper, for the first time, we study a novel variant of AkNN queries, namely All-Visible-k-Nearest-Neighbor (AVkNN) query, which takes into account the impact of obstacles on the visibility of objects. Given a data set P, a query set Q, and an obstacle set O, an AVkNN query retrieves for each point/object in Q its visible k nearest neighbors in P. We formalize the AVkNN query, and then propose efficient algorithms for AVkNN retrieval, assuming that P, Q, and O are indexed by conventional data-partitioning indexes (e.g., R-trees). Our approaches employ pruning techniques and introduce a new pruning metric called VMDIST. Extensive experiments using both real and synthetic datasets demonstrate the effectiveness of our presented pruning techniques and the performance of our proposed algorithms.


Query Processing Synthetic Dataset Query Point Query Performance Pruning Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In: SIGMOD, pp. 322–331 (1990)Google Scholar
  2. 2.
    Bohm, C., Krebs, F.: The k-Nearest Neighbour Join: Turbo Charging the KDD Process. Knowl. Inf. Syst. 6(6), 728–749 (2004)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Patel, J.: Efficient Evaluation of All-Nearest-Neighbor Queries. In: ICDE, pp. 1056–1065 (2007)Google Scholar
  4. 4.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest Pair Queries in Spatial Databases. In: SIGMOD, pp. 189–200 (2000)Google Scholar
  5. 5.
    Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: Optimizing All-Nearest-Neighbor Queries with Trigonometric Pruning. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 501–518. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Gao, Y., Zheng, B., Chen, G., Chen, C., Li, Q.: Continuous Nearest-Neighbor Search in the Presence of Obstacles. ACM Trans. Database Syst. 36(2), 9 (2011)CrossRefGoogle Scholar
  7. 7.
    Gao, Y., Zheng, B., Chen, G., Lee, W.C., Lee, K.C.K., Li, Q.: Visible Reverse k-Nearest Neighbor Query Processing in Spatial Databases. IEEE Trans. Knowl. Data Eng. 21(9), 1314–1327 (2009)CrossRefGoogle Scholar
  8. 8.
    Gao, Y., Zheng, B., Chen, G., Li, Q., Guo, X.: Continuous Visible Nearest Neighbor Query Processing in Spatial Databases. VLDB J. 20(3), 371–396 (2011)CrossRefGoogle Scholar
  9. 9.
    Hjaltason, G.R., Samet, H.: Incremental Distance Join Algorithms for Spatial Databases. In: SIGMOD, pp. 237–248 (1998)Google Scholar
  10. 10.
    Jain, A., Murthy, M., Flynn, P.: Data Clustering: A Review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  11. 11.
    Li, C., Gu, Y., Li, F., Chen, M.: Moving k-Nearest Neighbor Query over Obstructed Regions. In: APWeb, pp. 29–35 (2010) Google Scholar
  12. 12.
    Lowe, D.: Object Recognition from Local Scale-Invariant Features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  13. 13.
    Nakano, K., Olariu, S.: An Optimal Algorithm for the Angle-Restricted All Nearest Neighbor Problem on the Reconfigurable Mesh, with Applications. IEEE Trans. Parallel Distrib. Syst. 8(9), 983–990 (1997)CrossRefGoogle Scholar
  14. 14.
    Nutanong, S., Tanin, E., Zhang, R.: Incremental Evaluation of Visible Nearest Neighbor queries. IEEE Trans. Knowl. Data Eng. 22(5), 665–681 (2010)CrossRefGoogle Scholar
  15. 15.
    Sankaranarayanan, J., Samet, H., Varshney, A.: A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point-Clouds. Comput. Graph. 31(2), 157–174 (2007)CrossRefGoogle Scholar
  16. 16.
    Tao, Y., Papadias, D., Lian, X., Xiao, X.: Multidimensional Reverse kNN Search. VLDB J. 16(3), 293–316 (2007)CrossRefGoogle Scholar
  17. 17.
    Tung, A.K.H., Hou, J., Han, J.: Spatial Clustering in the Presence of Obstacles. In: ICDE, pp. 359–367 (2001)Google Scholar
  18. 18.
    Wang, X., Hamilton, H.J.: Clustering Spatial Data in the Presence of Obstacles. International Journal on Artificial Intelligence Tools 14(1-2), 177–198 (2005)CrossRefGoogle Scholar
  19. 19.
    Wang, Y.-R., Horng, S.-J., Wu, C.-H.: Efficient Algorithms for the All Nearest Neighbor and Closest Pair Problems on the Linear Array with a Reconfigurable Pipelined Bus System. IEEE Trans. Parallel Distrib. Syst. 16(3), 193–206 (2005)CrossRefGoogle Scholar
  20. 20.
    Xia, C., Hsu, D., Tung, A.K.H.: A Fast Filter for Obstructed Nearest Neighbor Queries. In: Williams, H., MacKinnon, L.M. (eds.) BNCOD 2004. LNCS, vol. 3112, pp. 203–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Xia, C., Lu, H., Ooi, B.C., Hu, J.: GORDER: An Efficient Method for KNN Join Processing. In: VLDB, pp. 756–767 (2004)Google Scholar
  22. 22.
    Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group Visible Nearest Neighbor Queries in Spatial Databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 333–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Yu, C., Cui, B., Wang, S., Su, J.: Efficient Index-based KNN Join Processing for High-dimensional Data. Information and Software Technology 49(4), 332–344 (2007)CrossRefGoogle Scholar
  24. 24.
    Zaiane, O.R., Lee, C.-H.: Clustering Spatial Data in the Presence of Obstacles: A Density-based Approach. In: IDEAS, pp. 214–223 (2002)Google Scholar
  25. 25.
    Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-Nearest-Neighbors Queries in Spatial Databases. In: SSDBM, pp. 297–306 (2004)Google Scholar
  26. 26.
    Zhang, J., Papadias, D., Mouratidis, K., Zhu, M.: Spatial Queries in the Presence of Obstacles. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 366–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yafei Wang
    • 1
  • Yunjun Gao
    • 1
  • Lu Chen
    • 1
  • Gang Chen
    • 1
  • Qing Li
    • 2
  1. 1.College of Computer ScienceZhejiang UniversityChina
  2. 2.Department of Computer ScienceCity University of Hong KongHong Kong

Personalised recommendations