Advertisement

An Efficient SQL Rewrite Approach for Temporal Coalescing in the Teradata RDBMS

  • Mohammed Al-Kateb
  • Ahmad Ghazal
  • Alain Crolotte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7447)

Abstract

The importance of temporal data management is manifested by a considerable attention from the database research community. This importance is becoming even more evident by the recent increasing support of temporal features in major commercial database systems. Among these systems, Teradata offers a native support to a wide range of temporal analytics. In this paper, we address the problem of temporal coalescing in the Teradata RDBMS. Temporal coalescing is a key temporal query processing operation, which merges adjacent or overlapping timestamps of value-equivalent rows. From existing approaches to implement temporal coalescing, pursuing an SQL-based approach is perhaps the most feasible and the easiest applicable. Along this direction, we propose an efficient SQL rewrite approach to implement temporal coalescing in the Teradata RDBMS by leveraging runtime conditional partitioning – a Teradata enhancement to ANSI ordered analytic functions – that enables to express the coalescing semantic in an optimized join-free single-scan SQL query. We evaluated our proposed approach over a system running Teradata 14.0 with a performance study that demonstrates its efficiency.

Keywords

Product Management Professional Support Temporal Database Base Table Virtual Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhlen, M.H.: Temporal coalescing. In: Encyclopedia of Database Systems, pp. 2932–2936 (2009)Google Scholar
  2. 2.
    Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: VLDB, pp. 180–191 (1996)Google Scholar
  3. 3.
    Dyreson, C., et al.: A consensus glossary of temporal database concepts. SIGMOD Rec. 23(1), 52–64 (1994)CrossRefGoogle Scholar
  4. 4.
    Chandra, R., Segev, A.: Managing temporal financial data in an extensible database. In: VLDB 1993, pp. 302–313 (1993)Google Scholar
  5. 5.
    Date, C., Darwen, H.: Temporal Data and the Relational Model. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  6. 6.
  7. 7.
    Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE TKDE 11(1), 36–44 (1999)Google Scholar
  8. 8.
  9. 9.
    Snodgrass, R.T., et al.: TSQL2 language specification. SIGMOD Rec. 23(1), 65–86 (1994)CrossRefGoogle Scholar
  10. 10.
    Shoshani, A., Kawagoe, K.: Temporal data management. In: VLDB 1986, pp. 79–88 (1986)Google Scholar
  11. 11.
    Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann (1999)Google Scholar
  12. 12.
    Tansel, A.U.: Temporal databases theory, design, and implementation. The Benjamin/Cummings Publishing Company, Inc. (1993)Google Scholar
  13. 13.
    Tansel, A.U.: Temporal relational data model. IEEE TKDE 09(3), 464–479 (1997)Google Scholar
  14. 14.
    Teradata. Teradata temporal analytics (2010), http://www.teradata.com/database/teradata-temporal/
  15. 15.
    Zhou, X., Wang, F., Zaniolo, C.: Efficient Temporal Coalescing Query Support in Relational Database Systems. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 676–686. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammed Al-Kateb
    • 1
  • Ahmad Ghazal
    • 1
  • Alain Crolotte
    • 1
  1. 1.Teradata LabsEl SegundoUSA

Personalised recommendations