A Framework for Time-Aware Recommendations

  • Kostas Stefanidis
  • Irene Ntoutsi
  • Kjetil Nørvåg
  • Hans-Peter Kriegel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7447)


Recently, recommendation systems have received significant attention. However, most existing approaches focus on recommending items of potential interest to users, without taking into consideration how temporal information influences the recommendations. In this paper, we argue that time-aware recommendations need to be pushed in the foreground. We introduce an extensive model for time-aware recommendations from two perspectives. From a fresh-based perspective, we propose using a suite of aging schemes towards making recommendations mostly depend on fresh and novel user preferences. From a context-based perspective, we focus on providing different suggestions under different temporal specifications. The proposed strategies are experimentally evaluated using real movies ratings.


Recommendation System Domain Expert User Preference Mean Absolute Error Temporal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Movielens data sets, (visited on November 2011)
  2. 2.
    Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems 22(3), 48–55 (2007)CrossRefGoogle Scholar
  3. 3.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRefGoogle Scholar
  4. 4.
    Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: Semantics and efficiency. PVLDB 2(1), 754–765 (2009)Google Scholar
  5. 5.
    Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  6. 6.
    Balog, K., Bogers, T., Azzopardi, L., de Rijke, M., van den Bosch, A.: Broad expertise retrieval in sparse data environments. In: SIGIR, pp. 551–558 (2007)Google Scholar
  7. 7.
    Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: CARS, pp. 1–5 (2009)Google Scholar
  8. 8.
    Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI, pp. 43–52 (1998)Google Scholar
  9. 9.
    Ding, Y., Li, X.: Time weight collaborative filtering. In: CIKM, pp. 485–492 (2005)Google Scholar
  10. 10.
    Gama, J.: Knowledge Discovery from Data Streams. CRC Press (2010)Google Scholar
  11. 11.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: Grouplens: Applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  12. 12.
    Melville, P., Sindhwani, V.: Recommender systems. In: Encyclopedia of Machine Learning, pp. 829–838 (2010)Google Scholar
  13. 13.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: ACM DL, pp. 195–204 (2000)Google Scholar
  14. 14.
    Ntoutsi, I., Stefanidis, K., Nørvåg, K., Kriegel, H.-P.: Fast group recommendations by applying user clustering. In: ER (2012)Google Scholar
  15. 15.
    O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: A recommender system for groups of user. In: ECSCW, pp. 199–218 (2001)Google Scholar
  16. 16.
    Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)CrossRefGoogle Scholar
  17. 17.
    Pazzani, M.J., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)CrossRefGoogle Scholar
  18. 18.
    Stefanidis, K., Pitoura, E., Vassiliadis, P.: Managing contextual preferences. Inf. Syst. 36(8), 1158–1180 (2011)CrossRefGoogle Scholar
  19. 19.
    Tintarev, N., Masthoff, J.: Designing and evaluating explanations for recommender systems. In: Recommender Systems Handbook, pp. 479–510. Springer (2011)Google Scholar
  20. 20.
    Xiang, L., Yang, Q.: Time-dependent models in collaborative filtering based recommender system. In: Web Intelligence, pp. 450–457 (2009)Google Scholar
  21. 21.
    Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal recommendation on graphs via long- and short-term preference fusion. In: KDD, pp. 723–732 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kostas Stefanidis
    • 1
  • Irene Ntoutsi
    • 2
  • Kjetil Nørvåg
    • 1
  • Hans-Peter Kriegel
    • 2
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Institute for InformaticsLudwig Maximilian UniversityMunichGermany

Personalised recommendations