Advertisement

Paragraph Tables: A Storage Scheme Based on RDF Document Structure

  • Akiyoshi Matono
  • Isao Kojima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7447)

Abstract

Efficient query processing for RDF graphs is essential, because RDF is one of the most important frameworks supporting the semantic web and linked data. The performance of query processing is based on the storage layout. So far, a number of storage schemes for RDF graphs have already been proposed. However most approaches must frequently perform costly join operations, because they decompose an RDF graph into a set of triples, store them separately, and need to connect them to reconstruct a graph that matchs the query graph, and this process requires join operations. In this paper, we propose a storage scheme that stores RDF graphs as they are connected, without decomposition. We focus on RDF documents, where adjacent triples have a high relationship and may be described for the same resource. So we define a set of adjacent triples that refer to the same resource as an RDF paragraph. Our approach constructs the table layout based on the RDF paragraphs. We evaluate the performance of our approach through experiments and demonstrate that our approach outperforms other approaches in query performance in most cases.

Keywords

Query Processing Resource Description Framework Property Table Query Performance Storage Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data management using vertical partitioning. In: Koch, C., Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Florescu, D., Chan, C.Y., Ganti, V., Kanne, C.C., Klas, W., Neuhold, E.J. (eds.) VLDB, pp. 411–422. ACM (2007)Google Scholar
  2. 2.
    Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The ICS-FORTH RDFSuite: Managing voluminous RDF description bases. In: SemWeb (2001)Google Scholar
  3. 3.
    Beckett, D., Berners-Lee, T.: Turtle - terse rdf triple language (January 2008), http://www.w3.org/TeamSubmission/turtle/ (W3C Team Submission January 14, 2008)
  4. 4.
    Berners-Lee, T., Connolly, D.: Notation3 (n3): A readable rdf syntax (January 2008), http://www.w3.org/TeamSubmission/n3/ (W3C Team Submission January 14, 2008)
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  6. 6.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Candan, K.S., Liu, H., Suvarna, R.: Resource description framework: Metadata and its applications. SIGKDD Explorations 3(1), 6–19 (2001)CrossRefGoogle Scholar
  8. 8.
    Carroll, J.J., Reynolds, D., Dickinson, I., Seaborne, A., Dollin, C., Wilkinson, K.: Jena: Implementing the semantic web recommendations. Technical Report HPL-2003-146, HP Labs (2003)Google Scholar
  9. 9.
    Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying scheme. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.Å., Ooi, B.C. (eds.) VLDB, pp. 1216–1227. ACM (2005)Google Scholar
  10. 10.
    Grant, J., Beckett, D.: Rdf test cases: N-triples (February 2004), http://www.w3.org/TR/rdf-testcases/#ntriples (W3C Recommendation February 10, 2004)
  11. 11.
    Levandoski, J.J., Mokbel, M.F.: RDF data-centric storage. In: ICWS, pp. 911–918. IEEE (2009)Google Scholar
  12. 12.
    Manola, F., Miller, E.: RDF primer (February 2004), http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (W3C Recommendation February 10, 2004)
  13. 13.
    Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659 (2008)Google Scholar
  14. 14.
    Projects, S.: The lehigh university benchmark (LUBM), http://swat.cse.lehigh.edu/projects/lubm/
  15. 15.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (January 2008), http://www.w3.org/TR/rdf-sparql-query/ (W3C Recommendation January 15, 2008)
  16. 16.
    Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD Rec. 38(4), 23–28 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Du, X., Lu, J., Wang, X.: FlexTable: Using a Dynamic Relation Model to Store RDF Data. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010, Part I. LNCS, vol. 5981, pp. 580–594. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. PVLDB 1(1), 1008–1019 (2008)Google Scholar
  19. 19.
    Wilkinson, K.: Jena property table implementation. Technical Report HPL-2006-140, HP Labs (2006)Google Scholar
  20. 20.
    World Wide Web Consortium: Rdf/xml syntax specification (revised) (2004), http://www.w3.org/TR/rdf-syntax-grammar/ (W3C Recommendation February 10, 2004)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Akiyoshi Matono
    • 1
  • Isao Kojima
    • 1
  1. 1.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations