Gender Differences in Muscular Protection of the Knee

  • Benjamin Noonan
  • Edward M. Wojtys


This chapter summarizes the differences between male and female athletes in the knee’s anatomical structure and neuromuscular system. There are multiple protective systems for the anterior cruciate ligament (ACL) during physical activity, including the knee’s anatomical structure and neuromuscular system. This system generates and limits the inherent qualities of the knee including laxity, stiffness, and strength. Parameters of this system that may be tested include proprioception, muscle reaction time, and muscle time to peak torque. Gender differences exist in neuromuscular indices, as well as in balance and hamstring-quadriceps recruitment patterns. However, the influence of these differences on ACL injury susceptibility remains uncertain. This is due to a lack of a clear understanding of the multifactorial mechanism of ACL injuries, especially in the female population, with newer evidence pointing toward structural, mechanical, and neuromuscular factors. Continued research in neuromuscular control is justified because unlike many anatomical and physiological factors, it is modifiable.


Anterior Cruciate Ligament Anterior Cruciate Ligament Injury Female Athlete Male Athlete Anterior Tibial Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson AF, Dome DC, Gautam S et al (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29(1):58–66PubMedGoogle Scholar
  2. 2.
    Barber-Westin SD, Galloway M, Noyes FR et al (2005) Assessment of lower limb neuromuscular control in prepubescent athletes. Am J Sports Med 33(12):1853–1860PubMedCrossRefGoogle Scholar
  3. 3.
    Barber-Westin SD, Noyes FR, Galloway M (2006) Jump-land characteristics and muscle strength development in young athletes: a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med 34(3):375–384PubMedCrossRefGoogle Scholar
  4. 4.
    Blackburn JT, Riemann BL, Padua DA (2004) Sex comparison of extensibility, passive, and active stiffness of the knee flexors. Clin Biomech (Bristol, Avon) 19(1):36–43CrossRefGoogle Scholar
  5. 5.
    Blackburn JT, Padua DA (2008) Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol, Avon) 23(3):313–319CrossRefGoogle Scholar
  6. 6.
    Bowerman SJ, Smith DR, Carlson M et al (2006) A comparison of factors influencing ACL injury in male and female athletes and non-athletes. Phys Ther Sport 7(3):144–152CrossRefGoogle Scholar
  7. 7.
    Buchanan PA, Vardaxis VG (2003) Sex-related and Age-related differences in knee strength of basketball players ages 11–17 years. J Athl Train 38(3):231–237PubMedGoogle Scholar
  8. 8.
    Cowling EJ, Steele JR (2001) The effect of upper-limb motion on lower-limb muscle synchrony. Implications for anterior cruciate ligament injury. J Bone Joint Surg Am 83-A(1):35–41PubMedGoogle Scholar
  9. 9.
    Delextrat A, Baker J, Cohen DD et al (2011) Effect of a simulated soccer match on the functional hamstrings-to-quadriceps ratio in amateur female players. Scand J Med Sci Sports. doi: 10.1111/j.1600-0838.2011.01415.x.
  10. 10.
    Ford KR, Myer GD, Schmitt LC et al (2011) Preferential quadriceps activation in female athletes with incremental increases in landing intensity. J Appl Biomech 27(3):215–222PubMedGoogle Scholar
  11. 11.
    Granata KP, Padua DA, Wilson SE (2002) Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol 12(2):127–135PubMedCrossRefGoogle Scholar
  12. 12.
    Granata KP, Wilson SE, Padua DA (2002) Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics. J Electromyogr Kinesiol 12(2):119–126PubMedCrossRefGoogle Scholar
  13. 13.
    Hewett TE, Stroupe AL, Nance TA et al (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773PubMedCrossRefGoogle Scholar
  14. 14.
    Hewett TE, Myer GD, Ford KR (2004) Decrease in neuromuscular control about the knee with maturation in female athletes. J Bone Joint Surg Am 86-A(8):1601–1608PubMedGoogle Scholar
  15. 15.
    Hewett TE, Myer GD, Zazulak BT (2008) Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport 11(5):452–459PubMedCrossRefGoogle Scholar
  16. 16.
    Hill AV (1953) The mechanics of active muscle. Proc R Soc Lond B Biol Sci 141(902):104–117PubMedCrossRefGoogle Scholar
  17. 17.
    Holm I, Vollestad N (2008) Significant effect of gender on hamstring-to-quadriceps strength ratio and static balance in prepubescent children from 7 to 12 years of age. Am J Sports Med 36(10):2007–2013PubMedCrossRefGoogle Scholar
  18. 18.
    Hrysomallis C (2011) Balance ability and athletic performance. Sports Med 41(3):221–232PubMedCrossRefGoogle Scholar
  19. 19.
    Huston LJ, Wojtys EM (1996) Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24(4):427–436PubMedCrossRefGoogle Scholar
  20. 20.
    Lephart SM, Ferris CM, Riemann BL et al (2002) Gender differences in strength and lower extremity kinematics during landing. Clin Orthop 401:162–169PubMedCrossRefGoogle Scholar
  21. 21.
    Myer GD, Ford KR, Paterno MV et al (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36(6):1073–1080PubMedCrossRefGoogle Scholar
  22. 22.
    Noyes FR, Grood ES, Torzilli PA (1989) Current concepts review. The definitions of terms for motion and position of the knee and injuries of the ligaments. J Bone Joint Surg Am 71(3):465–472PubMedGoogle Scholar
  23. 23.
    Noyes FR, Barber-Westin SD (2005) Isokinetic profile and differences in tibial rotation strength between male and female athletes 11 to 17 years of age. Isok Exer Sci 13:251–259Google Scholar
  24. 24.
    Nunome H, Asai T, Ikegami Y et al (2002) Three-dimensional kinetic analysis of side-foot and instep soccer kicks. Med Sci Sports Exerc 34(12):2028–2036PubMedCrossRefGoogle Scholar
  25. 25.
    Oh YK, Kreinbrink JL, Wojtys EM et al (2012) Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 30(4):528–534PubMedCrossRefGoogle Scholar
  26. 26.
    Park SK, Stefanyshyn DJ, Loitz-Ramage B et al (2009) Changing hormone levels during the menstrual cycle affect knee laxity and stiffness in healthy female subjects. Am J Sports Med 37(3):588–598PubMedCrossRefGoogle Scholar
  27. 27.
    Pincivero DM, Gandaio CM, Ito Y (2003) Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions. Eur J Appl Physiol 89(2):134–141PubMedCrossRefGoogle Scholar
  28. 28.
    Renstrom P, Ljungqvist A, Arendt E et al (2008) Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 42(6):394–412PubMedCrossRefGoogle Scholar
  29. 29.
    Rosene JM, Fogarty TD, Mahaffey BL (2001) Isokinetic hamstrings: quadriceps ratios in intercollegiate athletes. J Athl Train 36(4):378–383PubMedGoogle Scholar
  30. 30.
    Rozzi SL, Lephart SM, Fu FH (1999) Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J Athl Train 34(2):106–114PubMedGoogle Scholar
  31. 31.
    Rozzi SL, Lephart SM, Gear WS et al (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319PubMedGoogle Scholar
  32. 32.
    Sangnier S, Tourny-Chollet C (2007) Comparison of the decrease in strength between hamstrings and quadriceps during isokinetic fatigue testing in semiprofessional soccer players. Int J Sports Med 28(11):952–957PubMedCrossRefGoogle Scholar
  33. 33.
    Shultz SJ, Perrin DH, Adams MJ et al (2001) Neuromuscular response characteristics in men and women after knee perturbation in a single-leg, weight-bearing stance. J Athl Train 36(1):37–43PubMedGoogle Scholar
  34. 34.
    Shultz SJ, Schmitz RJ, Nguyen AD (2008) Research retreat IV: ACL injuries–the gender bias: April 3–5, 2008 Greensboro, NC. J Athl Train 43(5):530–531PubMedCrossRefGoogle Scholar
  35. 35.
    Shultz SJ, Schmitz RJ, Nguyen AD et al (2010) ACL research retreat V: an update on ACL injury risk and prevention, March 25–27, 2010, Greensboro, NC. J Athl Train 45(5):499–508PubMedCrossRefGoogle Scholar
  36. 36.
    Shultz SJ, Schmitz RJ, Beynnon BD (2011) Variations in varus/valgus and internal/external rotational knee laxity and stiffness across the menstrual cycle. J Orthop Res 29(3):318–325PubMedCrossRefGoogle Scholar
  37. 37.
    Small K, McNaughton L, Greig M et al (2010) The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport 13(1):120–125PubMedCrossRefGoogle Scholar
  38. 38.
    Steiner ME, Grana WA, Chillag K et al (1986) The effect of exercise on anterior-posterior knee laxity. Am J Sports Med 14(1):24–29PubMedCrossRefGoogle Scholar
  39. 39.
    Uhorchak JM, Scoville CR, Williams GN et al (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842PubMedGoogle Scholar
  40. 40.
    Winter DA (1983) Moments of force and mechanical power in jogging. J Biomech 16(1):91–97PubMedCrossRefGoogle Scholar
  41. 41.
    Withrow TJ, Huston LJ, Wojtys EM et al (2006) The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34(2):269–274PubMedCrossRefGoogle Scholar
  42. 42.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621PubMedCrossRefGoogle Scholar
  43. 43.
    Wojtys EM, Ashton-Miller JA, Huston LJ (2002) A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am 84-A(1):10–16PubMedGoogle Scholar
  44. 44.
    Wojtys EM, Huston LJ, Schock HJ et al (2003) Gender differences in muscular protection of the knee in torsion in size-matched athletes. J Bone Joint Surg Am 85-A(5):782–789PubMedGoogle Scholar
  45. 45.
    Zazulak BT, Paterno M, Myer GD et al (2006) The effects of the menstrual cycle on anterior knee laxity: a systematic review. Sports Med 36(10):847–862PubMedCrossRefGoogle Scholar
  46. 46.
    Zebis MK, Andersen LL, Ellingsgaard H (2011) Rapid hamstring/quadriceps force capacity in male vs. female elite soccer players. J Strength Cond Res 25(7):1989–1993PubMedCrossRefGoogle Scholar
  47. 47.
    Zech A, Hubscher M, Vogt L et al (2010) Balance training for neuromuscular control and performance enhancement: a systematic review. J Athl Train 45(4):392–403PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.MedSport OrthopaedicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Orthoapedic SurgeryUniversity of MichiganAnn ArborUSA
  3. 3.Sports Medicine ServiceUniversity of MichiganAnn ArborUSA

Personalised recommendations