Skip to main content

Role of Shoe–Surface Interaction and Noncontact ACL Injuries

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

This chapter presents the evidence regarding one of the environmental factors affecting a female athlete’s risk of noncontact ACL injury, shoe–surface interaction. This interaction is defined as the coefficient of friction (COF) between the athlete’s shoe and the surface. There are three factors that may affect the COF of the shoe–surface interaction: the intrinsic shoe properties, the intrinsic surface properties, and the weather conditions during the time of play. Furthermore, increased COF conditions are associated with higher ACL injury rates than decreased COF conditions. Additionally, increasing the COF of the shoe–surface interaction causes an athlete to alter her movement techniques in specific ways that increase the risk of ACL injury, providing a biomechanical basis for the increased incidence of ACL injuries observed on high COF surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki H, Kohno T, Fujiya H et al (2010) Incidence of injury among adolescent soccer players: a comparative study of artificial and natural grass turfs. Clin J Sport Med 20(1):1–7

    Article  PubMed  Google Scholar 

  2. Arnason A, Gudmundsson A, Dahl HA et al (1996) Soccer injuries in Iceland. Scand J Med Sci Sports 6(1):40–45

    Article  PubMed  CAS  Google Scholar 

  3. Dowling AV, Corazza S, Chaudhari AM et al (2010) Shoe-surface friction influences movement strategies during a sidestep cutting task: implications for anterior cruciate ligament injury risk. Am J Sports Med 38(3):478–485

    Article  PubMed  Google Scholar 

  4. Dragoo JL, Braun HJ (2010) The effect of playing surface on injury rate: a review of the current literature. Sports Med 40(11):981–990

    Article  PubMed  Google Scholar 

  5. Drakos MC, Hillstrom H, Voos JE et al (2010) The effect of the shoe–surface interface in the development of anterior cruciate ligament strain. J Biomech Eng 132(1):011003

    Article  PubMed  Google Scholar 

  6. Ekstrand J, Nigg BM (1989) Surface-related injuries in soccer. Sports Med 8(1):56–62

    Article  PubMed  CAS  Google Scholar 

  7. Ekstrand J, Timpka T, Hagglund M (2006) Risk of injury in elite football played on artificial turf versus natural grass: a prospective two-cohort study. Br J Sports Med 40(12):975–980

    Article  PubMed  CAS  Google Scholar 

  8. Elbert G (1998) The physics hyperbook: friction.http://physics.info/. Accessed on 15 Feb 2012

  9. Fuller CW, Dick RW, Corlette J et al (2007) Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 1: match injuries. Br J Sports Med 41(Suppl 1):i20–i26

    Article  PubMed  Google Scholar 

  10. Fuller CW, Dick RW, Corlette J et al (2007) Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 2: training injuries. Br J Sports Med 41(Suppl 1):i27–i32

    Article  PubMed  Google Scholar 

  11. Gabbett T, Minbashian A, Finch C (2007) Influence of environmental and ground conditions on injury risk in rugby league. J Sci Med Sport 10(4):211–218

    Article  PubMed  Google Scholar 

  12. Heidt RS Jr, Dormer SG, Cawley PW et al (1996) Differences in friction and torsional resistance in athletic shoe-turf surface interfaces. Am J Sports Med 24(6):834–842

    Article  PubMed  Google Scholar 

  13. Hoff GL, Martin TA (1986) Outdoor and indoor soccer: injuries among youth players. Am J Sports Med 14(3):231–233

    Article  PubMed  CAS  Google Scholar 

  14. James IT, Mcleod AJ (2010) The effect of maintenance on the performance of sand-filled synthetic turf surfaces. Sports Technol 3(1):43–51

    Google Scholar 

  15. Jamison S, Lee C (1989) The incidence of female hockey injuries on grass and synthetic playing surfaces. Aust J Sci Med Sport 21(2):15–17

    Google Scholar 

  16. Kaila R (2007) Influence of modern studded and bladed soccer boots and sidestep cutting on knee loading during match play conditions. Am J Sports Med 35(9):1528–1536

    Article  PubMed  Google Scholar 

  17. Lambson RB, Barnhill BS, Higgins RW (1996) Football cleat design and its effect on anterior cruciate ligament injuries. A three-year prospective study. Am J Sports Med 24(2):155–159

    Article  PubMed  CAS  Google Scholar 

  18. Livesay GA, Reda DR, Nauman EA (2006) Peak torque and rotational stiffness developed at the shoe-surface interface: the effect of shoe type and playing surface. Am J Sports Med 34(3):415–422

    Article  PubMed  Google Scholar 

  19. Meyers MC, Barnhill BS (2004) Incidence, causes, and severity of high school football injuries on FieldTurf versus natural grass: a 5-year prospective study. Am J Sports Med 32(7):1626–1638

    Article  PubMed  Google Scholar 

  20. Meyers MC (2010) Incidence, mechanisms, and severity of game-related college football injuries on FieldTurf versus natural grass: a 3-year prospective study. Am J Sports Med 38(4):687–697

    Article  PubMed  Google Scholar 

  21. Nigg BM, Segesser B (1988) The influence of playing surfaces on the load on the locomotor system and on football and tennis injuries. Sports Med 5(6):375–385

    Article  PubMed  CAS  Google Scholar 

  22. Olsen OE, Myklebust G, Engebretsen L et al (2003) Relationship between floor type and risk of ACL injury in team handball. Scand J Med Sci Sports 13(5):299–304

    Article  PubMed  CAS  Google Scholar 

  23. Orchard J (2002) Is there a relationship between ground and climatic conditions and injuries in football? Sports Med 32(7):419–432

    PubMed  CAS  Google Scholar 

  24. Orchard JW, Chivers I, Aldous D et al (2005) Rye grass is associated with fewer non-contact anterior cruciate ligament injuries than Bermuda grass. Br J Sports Med 39(10):704–709

    Article  PubMed  Google Scholar 

  25. Orchard JW, Powell JW (2003) Risk of knee and ankle sprains under various weather conditions in American football. Med Sci Sports Exerc 35(7):1118–1123

    Article  PubMed  Google Scholar 

  26. Orchard J, Seward H, McGivern J et al (2001) Intrinsic and extrinsic risk factors for anterior cruciate ligament injury in Australian footballers. Am J Sports Med 29(2):196–200

    Article  PubMed  CAS  Google Scholar 

  27. Pasanen K, Parkkari J, Rossi L et al (2008) Artificial playing surface increases the injury risk in pivoting indoor sports: a prospective one-season follow-up study in Finnish female floorball. Br J Sports Med 42(3):194–197

    Article  PubMed  CAS  Google Scholar 

  28. Pedroza A, Fernandez S, Heidt R Jr et al (2010) Evaluation of the shoe-surface interaction using an agility maneuver. Med Sci Sports Exerc 42(9):1754–1759

    Article  PubMed  Google Scholar 

  29. Pope RP (2002) Rubber matting on an obstacle course causes anterior cruciate ligament ruptures and its removal eliminates them. Mil Med 167(4):355–358

    PubMed  Google Scholar 

  30. Pope RP (2002) Injury surveillance and systematic investigation identify a rubber matting hazard for anterior cruciate ligament rupture on an obstacle course. Mil Med 167(4):359–362

    PubMed  Google Scholar 

  31. Powell JW, Schootman M (1992) A multivariate risk analysis of selected playing surfaces in the National Football League: 1980 to 1989. An epidemiologic study of knee injuries. Am J Sports Med 20(6):686–694

    Article  PubMed  CAS  Google Scholar 

  32. Queen RM, Charnock BL, Garrett WE Jr et al (2008) A comparison of cleat types during two football-specific tasks on FieldTurf. Br J Sports Med 42(4):278–284; discussion 284

    Article  PubMed  CAS  Google Scholar 

  33. Scranton PE Jr, Whitesel JP, Powell JW et al (1997) A review of selected noncontact anterior cruciate ligament injuries in the National Football League. Foot Ankle Int 18(12):772–776

    PubMed  Google Scholar 

  34. Sheehan B (2011) Artificial grass for sport. Bindweld plastics and Bigprint.http://www.dpcd.vic.gov.au/_data/assets/pdf_file/0007/58912/ArtificialGrassForSportGuide.pdf. Accessed on 15 Feb 2012

  35. Skovron ML, Levy IM, Agel J (1990) Living with artificial grass: a knowledge update. Part 2: epidemiology. Am J Sports Med 18(5):510–513

    Article  PubMed  CAS  Google Scholar 

  36. Soligard T, Bahr R, Andersen TE (2012) Injury risk on artificial turf and grass in youth tournament football. Scand J Med Sci Sports. 2012 Jun;22(3):356–361.doi: 10.1111/j.1600-0838.2010.01174.x. Epub 2010 Aug 24

    Article  PubMed  CAS  Google Scholar 

  37. Steffen K, Andersen TE, Bahr R (2007) Risk of injury on artificial turf and natural grass in young female football players. Br J Sports Med 41(Suppl 1):i33–i37

    Article  PubMed  Google Scholar 

  38. Torg JS, Quedenfeld T (1971) Effect of shoe type and cleat length on incidence and severity of knee injuries among high school football players. Res Q 42(2):203–211

    PubMed  CAS  Google Scholar 

  39. Torg JS, Quedenfeld TC, Landau S (1974) The shoe-surface interface and its relationship to football knee injuries. J Sports Med 2(5):261–269

    Article  PubMed  CAS  Google Scholar 

  40. Torg JS, Stilwell G, Rogers K (1996) The effect of ambient temperature on the shoe-surface interface release coefficient. Am J Sports Med 24(1):79–82

    Article  PubMed  CAS  Google Scholar 

  41. Villwock MR, Meyer EG, Powell JW et al (2009) Football playing surface and shoe design affect rotational traction. Am J Sports Med 37(3):518–525

    Article  PubMed  Google Scholar 

  42. Wannop JW, Worobets JT, Stefanyshyn DJ (2010) Footwear traction and lower extremity joint loading. Am J Sports Med 38(6):1221–1228

    Article  PubMed  Google Scholar 

  43. Williams S, Hume PA, Kara S (2011) A review of football injuries on third and fourth generation artificial turfs compared with natural turf. Sports Med 41(11):903–923

    Article  PubMed  Google Scholar 

  44. Wright JM, Webner D (2010) Playing field issues in sports medicine. Curr Sports Med Rep 9(3):129–133

    PubMed  Google Scholar 

  45. Ahodges7 fromhttp://en.wikipedia.org/wiki/File:Team_Handball_Jumpshot_09_USA_Nationals.JPG

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel V. Dowling Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dowling, A.V., Andriacchi, T.P. (2012). Role of Shoe–Surface Interaction and Noncontact ACL Injuries. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32592-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32592-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32591-5

  • Online ISBN: 978-3-642-32592-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics