Restoration of Proprioception and Neuromuscular Control Following ACL Injury and Surgery

  • Kevin E. Wilk


This chapter discusses a rehabilitation program following ACL injury and surgery in which emphasis is placed on the neuromuscular and proprioception training components considered crucial in obtaining a successful outcome for athletes. A brief review of the complex interactions within the neuromuscular system that result in diminished proprioception and kinesthesia after ACL injury is presented. Concise definitions of terms commonly used in the literature to describe proprioception, kinesthesia, and motor development are provided. A variety of exercises are described for the rehabilitation professional, along with a balanced progression of the entire program from the first postoperative day to the release to unrestricted activities.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Anterior Cruciate Ligament Injury Neuromuscular Control Joint Position Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament-deficient knee. Clin Orthop Relat Res 288:40–47PubMedGoogle Scholar
  2. 2.
    Barber SD, Noyes FR, Mangine RE et al (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop 255:204–214PubMedGoogle Scholar
  3. 3.
    Barber-Westin SD, Noyes FR (2009) Decreasing the risk of anterior cruciate ligament injuries in female athletes. In: Noyes FR (ed) Noyes’ Knee Disorders: surgery, rehabilitation. Clinical Outcomes, Saunders, Philadelphia, pp 428–463Google Scholar
  4. 4.
    Barber-Westin SD, Smith ST, Campbell T et al (2010) The drop-jump video screening test: retention of improvement in neuromuscular control in female volleyball players. J Strength Cond Res 24(11):3055–3062PubMedCrossRefGoogle Scholar
  5. 5.
    Barrack RL, Skinner HB, Buckley SL (1989) Proprioception in the anterior cruciate deficient knee. Am J Sports Med 17(1):1–6PubMedCrossRefGoogle Scholar
  6. 6.
    Barrett DS, Cobb AG, Bentley G (1991) Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br 73(1):53–56PubMedGoogle Scholar
  7. 7.
    Beard DJ, Kyberd PJ, Fergusson CM (1993) Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg Br 75B(2):311–315Google Scholar
  8. 8.
    Beard DJ, Dodd CAF, Trundle HR et al (1994) Proprioception enhancement for anterior cruciate ligament deficiency. A prospective randomised trial of two physiotherapy regimes. J Bone Joint Surg Br 76B(4):654–659Google Scholar
  9. 9.
    Berchuck M, Andriacchi TP, Bach BR et al (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72(6):871–877PubMedGoogle Scholar
  10. 10.
    Biedert RM (2000) Contribution of the three levels of nervous system motor control: spinal cord, lower brain, cerebral cortex. In: Lephart S, Fu F (eds) Proprioception and neuromuscular control in joint stability. Human Kinetics, Champaign, pp 23–29Google Scholar
  11. 11.
    Birmingham TB, Kramer JF, Inglis JT et al (1998) Effect of a neoprene sleeve on knee joint position sense during sitting open kinetic chain and supine closed kinetic chain tests. Am J Sports Med 26(4):562–566PubMedGoogle Scholar
  12. 12.
    Brooks V (1986) The neural basis of motor control. Oxford University Press, New YorkGoogle Scholar
  13. 13.
    Chmielewski T, Hewett TE, Hurd WJ (2007) Principles of neuromuscular control for injury prevention and rehabilitation. In: Magee D, Zachazewski JE, Quillen WS (eds) Scientific foundations and principles of practice in musculoskeletal rehabilitation, vol 2. Saunders, St. Louis, pp 375–387Google Scholar
  14. 14.
    Chmielewski TL, Rudolph KS, Snyder-Mackler L (2002) Development of dynamic knee stability after acute ACL injury. J Electromyogr Kinesiol 12(4):267–274PubMedCrossRefGoogle Scholar
  15. 15.
    Chmielewski TL, Wilk KE, Snyder-Mackler L (2002) Changes in weight-bearing following injury or surgical reconstruction of the ACL: relationship to quadriceps strength and function. Gait Posture 16(1):87–95PubMedCrossRefGoogle Scholar
  16. 16.
    Chmielewski TL, Hurd WJ, Rudolph KS (2005) Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther 85(8):740–749, discussion 750–744PubMedGoogle Scholar
  17. 17.
    Chmielewski TL, Jones D, Day T et al (2008) The association of pain and fear of movement/reinjury with function during anterior cruciate ligament reconstruction rehabilitation. J Orthop Sports Phys Ther 38(12):746–753PubMedGoogle Scholar
  18. 18.
    Chmielewski TL, Zeppieri G Jr, Lentz TA et al (2011) Longitudinal changes in psychosocial factors and their association with knee pain and function after anterior cruciate ligament reconstruction. Phys Ther 91(9):1355–1366PubMedCrossRefGoogle Scholar
  19. 19.
    Denti M, Randelli P, Lo Vetere D (2000) Motor control performance in the lower extremity: normals vs. anterior cruciate ligament reconstructed knees 5–8 years from the index surgery. Knee Surg Sports Traumatol Arthrosc 8(5):296–300PubMedCrossRefGoogle Scholar
  20. 20.
    Di Fabio RP, Graf B, Badke MB et al (1992) Effect of knee joint laxity on long-loop postural reflexes: evidence for a human capsular-hamstring reflex. Exp Brain Res 90(1):189–200PubMedCrossRefGoogle Scholar
  21. 21.
    Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59(6):1888–1905PubMedGoogle Scholar
  22. 22.
    Distefano LJ, Padua DA, Blackburn JT et al (2010) Integrated injury prevention program improves balance and vertical jump height in children. J Strength Cond Res 24(2):332–342PubMedCrossRefGoogle Scholar
  23. 23.
    Durall CJ, Kernozek TW, Kersten M et al (2011) Associations between single-leg postural control and drop-landing mechanics in healthy women. J Sport Rehabil 20(4):406–418PubMedGoogle Scholar
  24. 24.
    Dutton M (2004) Neuromuscular control. In: Dutton M (ed) Orthopaedic examination, evaluation and intervention. McGraw Hill, New York, pp 55–57Google Scholar
  25. 25.
    Escamilla RF, Fleisig GS, Zheng N et al (1998) Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc 30(4):556–569PubMedCrossRefGoogle Scholar
  26. 26.
    Evarts EV (1973) Motor cortex reflexes associated with learned movement. Science 179(72):501–503PubMedCrossRefGoogle Scholar
  27. 27.
    Farquhar SJ, Chmielewski TL, Snyder-Mackler L (2005) Accuracy of predicting maximal quadriceps force from submaximal effort contractions after ­anterior cruciate ligament injury. Muscle Nerve 32(4):500–505PubMedCrossRefGoogle Scholar
  28. 28.
    Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) The efficacy of perturbation training in nonoperative anterior cruciate ligament rehabilitation programs for physical active individuals. Phys Ther 80(2):128–140PubMedGoogle Scholar
  29. 29.
    Flynn TW, Soutas-Little RW (1993) Mechanical power and muscle action during forward and backward running. J Orthop Sports Phys Ther 17(2):108–112PubMedGoogle Scholar
  30. 30.
    Fremerey RW, Lobenhoffer P, Zeichen J et al (2000) Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament: a prospective, longitudinal study. J Bone Joint Surg Br 82(6):801–806PubMedCrossRefGoogle Scholar
  31. 31.
    Harrison EL, Duenkel N, Dunlop R et al (1994) Evaluation of single-leg standing following anterior cruciate ligament surgery and rehabilitation. Phys Ther 74(3):245–252PubMedGoogle Scholar
  32. 32.
    Hart JM, Pietrosimone B, Hertel J et al (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45(1):87–97PubMedCrossRefGoogle Scholar
  33. 33.
    Hewett TE, Stroupe AL, Nance TA et al (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773PubMedCrossRefGoogle Scholar
  34. 34.
    Hewett TE, Lindenfeld TN, Riccobene JV et al (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 27(6):699–706PubMedGoogle Scholar
  35. 35.
    Hooks TR, Wilk KE, Reinold MM (2003) Comparison of proprioceptive deficits of the involved and noninvolved lower extremity following ACL injury and surgical reconstruction. J Orthop Sports Phys Ther 33:A59Google Scholar
  36. 36.
    Houk J, Simon W (1967) Responses of Golgi tendon organs to forces applied to muscle tendon. J Neurophysiol 30(6):1466–1481PubMedGoogle Scholar
  37. 37.
    Hurd WJ, Chmielewski TL, Snyder-Mackler L (2006) Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg Sports Traumatol Arthrosc 14(1):60–69PubMedCrossRefGoogle Scholar
  38. 38.
    Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: part 2, determinants of dynamic knee stability. Am J Sports Med 36(1):48–56PubMedCrossRefGoogle Scholar
  39. 39.
    Hurley MV, Jones DW, Newham DJ (1994) Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci (Lond) 86(3):305–310Google Scholar
  40. 40.
    Johansson H (1991) Role of knee ligaments in proprioception and regulation of muscle stiffness. J Electromyogr Kinesiol 1(3):158–179PubMedCrossRefGoogle Scholar
  41. 41.
    Johansson H, Sjolander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 18(5):341–368PubMedGoogle Scholar
  42. 42.
    Labella CR, Huxford MR, Grissom J et al (2011) Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Arch Pediatr Adolesc Med 165(11):1033–1040PubMedCrossRefGoogle Scholar
  43. 43.
    Lattanzio PJ, Petrella RJ, Sproule JR et al (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7(1):22–27PubMedCrossRefGoogle Scholar
  44. 44.
    Lephart S, Kocher MS, Fu F et al (1992) Proprioception following anterior cruciate ligament reconstruction. J Sport Rehabil 1:188–196Google Scholar
  45. 45.
    Lephart SM, Pincivero DM, Giraldo JL et al (1997) The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med 25(1):130–137PubMedCrossRefGoogle Scholar
  46. 46.
    Mandelbaum BR, Silvers HJ, Watanabe DS et al (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33(7):1003–1010PubMedCrossRefGoogle Scholar
  47. 47.
    Matthews PB (1971) Recent advances in the understanding of the muscle spindle. Sci Basis Med Annu Rev ISSN: 0080–7729, 99–128.Google Scholar
  48. 48.
    Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320:1–30PubMedGoogle Scholar
  49. 49.
    Myer GD, Ford KR, Brent JL (2006) The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res 20(2):345–353PubMedGoogle Scholar
  50. 50.
    Myer GD, Ford KR, McLean SG et al (2006) The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med 34(3):445–455PubMedCrossRefGoogle Scholar
  51. 51.
    Myklebust G, Engebretsen L, Braekken IH et al (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78PubMedCrossRefGoogle Scholar
  52. 52.
    Nashner LM, Shupert CL, Horak FB (1989) Organization of posture controls: an analysis of sensory and mechanical constraints. Prog Brain Res 80:411–418, discussion 395–417PubMedCrossRefGoogle Scholar
  53. 53.
    Noyes FR, Mangine RE, Barber S (1987) Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 15(2):149–160PubMedCrossRefGoogle Scholar
  54. 54.
    Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518PubMedCrossRefGoogle Scholar
  55. 55.
    Noyes FR, Berrios-Torres S, Barber-Westin SD et al (2000) Prevention of permanent arthrofibrosis after anterior cruciate ligament reconstruction alone or combined with associated procedures: a prospective study in 443 knees. Knee Surg Sports Traumatol Arthrosc 8(4):196–206PubMedCrossRefGoogle Scholar
  56. 56.
    Noyes FR, Barber-Westin SD, Fleckenstein C et al (2005) The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med 33(2):197–207PubMedCrossRefGoogle Scholar
  57. 57.
    Nyland JA, Shapiro R, Stine RL et al (1994) Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J Orthop Sports Phys Ther 20(3):132–137PubMedGoogle Scholar
  58. 58.
    Palmieri-Smith RM, Kreinbrink J, Ashton-Miller JA et al (2007) Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med 35(8):1269–1275PubMedCrossRefGoogle Scholar
  59. 59.
    Paterno MV, Ford KR, Myer GD et al (2007) Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med 17(4):258–262PubMedCrossRefGoogle Scholar
  60. 60.
    Paterno MV, Schmitt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978PubMedCrossRefGoogle Scholar
  61. 61.
    Roberts D, Andersson G, Friden T (2004) Knee joint proprioception in ACL-deficient knees is related to cartilage injury, laxity and age: a retrospective study of 54 patients. Acta Orthop Scand 75(1):78–83PubMedCrossRefGoogle Scholar
  62. 62.
    Schmidt R, Lee T (1999) Motor control and learning: a behavioral emphasis, 3rd edn. Human Kinetics, ChampaignGoogle Scholar
  63. 63.
    Skinner HB, Wyatt MP, Hodgdon JA et al (1986) Effect of fatigue on joint position sense of the knee. J Orthop Res 4(1):112–118PubMedCrossRefGoogle Scholar
  64. 64.
    Snyder-Mackler L, Ladin Z, Schepsis AA et al (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 73:1025–1036PubMedGoogle Scholar
  65. 65.
    Snyder-Mackler L, Delitto A, Bailey SL (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 77A(8):1166–1173Google Scholar
  66. 66.
    Sullivan PE, Markos PD, Minor MA (1982) An integrated approach to therapeutic exercise, theory, and clinical application. Reston Pub. Co., RestonGoogle Scholar
  67. 67.
    Swanik CB, Lephart SM, Giraldo JL et al (1999) Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train 34(2):121–129PubMedGoogle Scholar
  68. 68.
    Wilk KE, Voight ML, Keirns MA et al (1993) Stretch-shortening drills for the upper extremities: theory and clinical application. J Orthop Sports Phys Ther 17(5):225–239PubMedGoogle Scholar
  69. 69.
    Wilk KE (1994) Rehabilitation of isolated and combined posterior cruciate ligament injuries. Clin Sports Med 13(3):649–677PubMedGoogle Scholar
  70. 70.
    Wilk KE, Escamilla RF, Fleisig GS et al (1996) A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med 24(4):518–527PubMedCrossRefGoogle Scholar
  71. 71.
    Wilk KE, Arrigo C, Andrews JR et al (1999) Rehabilitation after anterior cruciate ligament reconstruction in the female athlete. J Athl Train 34(2):177–193PubMedGoogle Scholar
  72. 72.
    Wilk KE, Reinold MM, Hooks TR (2003) Recent advances in the rehabilitation of isolated and combined anterior cruciate ligament injuries. Orthop Clin North Am 34(1):107–137PubMedCrossRefGoogle Scholar
  73. 73.
    Wilk KE, Macrina LC, Cain EL et al (2012) Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther 42(3):153–171PubMedGoogle Scholar
  74. 74.
    Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22(1):89–104PubMedCrossRefGoogle Scholar
  75. 75.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621PubMedCrossRefGoogle Scholar
  76. 76.
    Yosmaoglu HB, Baltaci G, Kaya D et al (2011) Tracking ability, motor coordination, and functional determinants after anterior cruciate ligament reconstruction. J Sport Rehabil 20(2):207–218PubMedGoogle Scholar
  77. 77.
    Zouita Ben Moussa A, Zouita S, Dziri C et al (2009) Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehabil Med 52(6):475–484PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Champion Sports MedicineBirminghamUSA
  2. 2.American Sports Medicine InstituteBirminghamUSA
  3. 3.Programs in Physical TherapyMarquette UniversityMilwaukeeUSA
  4. 4.Tampa Bay Rays Professional Baseball TeamSt. PetersburgUSA

Personalised recommendations