Skip to main content

Proximal Risk Factors for ACL Injury: Role of the Hip

  • Chapter
  • First Online:

Abstract

This chapter reviews the role of hip function in ACL injuries, as well as gender differences in biomechanical and neuromuscular risk factors specifically related to hip mechanics and strength. Evidence supports strong consideration of the influence of proximal factors on injurious knee loading. Women have decreased hip abductor, external rotator, and extensor strength compared to men. Hip muscle function has been related to femur adduction and internal rotation, placing the ACL at risk for injury. Strategies that encourage sagittal plane motion and avoid excessive motion in the transverse and frontal planes at the hip decrease loading at the knee. ACL injury prevention training should emphasize engaging the larger hip extensor muscles for power generation and using hip abductors and external rotators to stabilize frontal and transverse plane motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baldon Rde M, Nakagawa TH, Muniz TB et al (2009) Eccentric hip muscle function in females with and without patellofemoral pain syndrome. J Athl Train 44(5):490–496

    Article  PubMed  Google Scholar 

  2. Baldon Rde M, Lobato DF, Carvalho LP et al (2011) Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J Appl Biomech 27(3):223–232

    PubMed  Google Scholar 

  3. Beutler A, de la Motte S, Marshall S et al (2009) Muscle strength and qualitative jump-landing differences in male and female military cadets: the jump-ACL study. J Sports Sci Med 8:663–671

    PubMed  Google Scholar 

  4. Boden BP, Dean GS, Feagin JA Jr et al (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    PubMed  CAS  Google Scholar 

  5. Chappell JD, Creighton RA, Giuliani C et al (2007) Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35(2):235–241

    Article  PubMed  Google Scholar 

  6. Claiborne TL, Armstrong CW, Gandhi V et al (2006) Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech 22(1):41–50

    PubMed  Google Scholar 

  7. Cochrane JL, Lloyd DG, Buttfield A et al (2007) Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport 10(2):96–104

    Article  PubMed  Google Scholar 

  8. Crossley KM, Zhang WJ, Schache AG et al (2011) Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med 39(4):866–873

    Article  PubMed  Google Scholar 

  9. Decker MJ, Torry MR, Wyland DJ et al (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon) 18(7):662–669

    Article  Google Scholar 

  10. Delp SL, Hess WE, Hungerford DS et al (1999) Variation of rotation moment arms with hip flexion. J Biomech 32(5):493–501

    Article  PubMed  CAS  Google Scholar 

  11. DeMorat G, Weinhold P, Blackburn T et al (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483

    Article  PubMed  Google Scholar 

  12. Dempsey AR, Lloyd DG, Elliott BC et al (2007) The effect of technique change on knee loads during ­sidestep cutting. Med Sci Sports Exerc 39(10):1765–1773

    Article  PubMed  Google Scholar 

  13. Devita P, Skelly WA (1992) Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc 24(1):108–115

    PubMed  CAS  Google Scholar 

  14. Ferber R, Davis IM, Williams DS 3rd (2003) Gender differences in lower extremity mechanics during running. Clin Biomech (Bristol, Avon) 18(4):350–357

    Article  Google Scholar 

  15. Ford KR, Myer GD, Smith RL et al (2006) A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon) 21(1):33–40

    Article  Google Scholar 

  16. Fredericson M, Cookingham CL, Chaudhari AM et al (2000) Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sport Med 10(3):169–175

    Article  PubMed  CAS  Google Scholar 

  17. Fukuda Y, Woo SL, Loh JC et al (2003) A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res 21(6):1107–1112

    Article  PubMed  Google Scholar 

  18. Fung DT, Hendrix RW, Koh JL et al (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218

    PubMed  Google Scholar 

  19. Golden GM, Pavol MJ, Hoffman MA (2009) Knee joint kinematics and kinetics during a lateral false-step maneuver. J Athl Train 44(5):503–510

    Article  PubMed  Google Scholar 

  20. Hashemi J, Breighner R, Chandrashekar N et al (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585

    Article  PubMed  Google Scholar 

  21. Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501

    Article  PubMed  Google Scholar 

  22. Hewett TE, Ford KR, Myer GD et al (2006) Gender ­differences in hip adduction motion and torque during a single-leg agility maneuver. J Orthop Res 24(3):416–421

    Article  PubMed  Google Scholar 

  23. Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140(2):223–233

    Article  PubMed  CAS  Google Scholar 

  24. Hollman JH, Ginos BE, Kozuchowski J et al (2009) Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil 18(1):104–117

    PubMed  Google Scholar 

  25. Imwalle LE, Myer GD, Ford KR et al (2009) Relationship between hip and knee kinematics in athletic women during cutting maneuvers: a possible link to noncontact anterior cruciate ligament injury and prevention. J Strength Cond Res 23(8):2223–2230

    Article  PubMed  Google Scholar 

  26. Ireland ML (1999) Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train 34(2):150–154

    PubMed  CAS  Google Scholar 

  27. Ireland ML (2002) The female ACL: why is it more prone to injury? Orthop Clin North Am 33(4):637–651

    Article  PubMed  Google Scholar 

  28. Ireland ML, Willson JD, Ballantyne BT et al (2003) Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther 33(11):671–676

    PubMed  Google Scholar 

  29. Jacobs C, Uhl TL, Seeley M et al (2005) Strength and fatigability of the dominant and nondominant hip abductors. J Athl Train 40(3):203–206

    PubMed  Google Scholar 

  30. Landry SC, McKean KA, Hubley-Kozey CL et al (2007) Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated side-cut maneuver. Am J Sports Med 35(11):1888–1900

    Article  PubMed  Google Scholar 

  31. Leetun DT, Ireland ML, Willson JD et al (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934

    Article  PubMed  Google Scholar 

  32. Markolf KL, Gorek JF, Kabo JM et al (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72(4):557–567

    PubMed  CAS  Google Scholar 

  33. McLean SG, Lipfert SW, van den Bogert AJ (2004) Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc 36(6):1008–1016

    Article  PubMed  Google Scholar 

  34. McLean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon) 20(8):863–870

    Article  Google Scholar 

  35. Mizner RL, Kawaguchi JK, Chmielewski TL (2008) Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthop Sports Phys Ther 38(6):353–361

    PubMed  Google Scholar 

  36. Niemuth PE, Johnson RJ, Myers MJ et al (2005) Hip muscle weakness and overuse injuries in recreational runners. Clin J Sport Med 15(1):14–21

    Article  PubMed  Google Scholar 

  37. Olsen OE, Myklebust G, Engebretsen L et al (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012

    Article  PubMed  Google Scholar 

  38. Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129(4):629–634

    Article  PubMed  CAS  Google Scholar 

  39. Pollard CD, Sigward SM, Powers CM (2007) Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med 17(1):38–42

    Article  PubMed  Google Scholar 

  40. Pollard CD, Sigward SM, Powers CM (2010) Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon) 25(2):142–146

    Article  Google Scholar 

  41. Salci Y, Kentel BB, Heycan C et al (2004) Clin Biomech (Bristol, Avon) 19(6):622–628

    Article  Google Scholar 

  42. Schmitz RJ, Kulas AS, Perrin DH et al (2007) Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech (Bristol, Avon) 22(6):681–688

    Article  Google Scholar 

  43. Shultz SJ, Nguyen AD, Leonard MD et al (2009) Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med Sci Sports Exerc 41(4):857–866

    Article  PubMed  Google Scholar 

  44. Sigward SM, Powers CM (2006) The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon) 21(1):41–48

    Article  Google Scholar 

  45. Sigward SM, Powers CM (2007) Loading characteristics of females exhibiting excessive valgus moments ­during cutting. Clin Biomech (Bristol, Avon) 22(7):827–833

    Article  Google Scholar 

  46. Sigward SM, Pollard CD, Powers CM (2011) The influence of sex and maturation on landing biomechanics: implications for anterior cruciate ligament injury. Scand J Med Sci Sports 22(4):502–509

    Article  PubMed  Google Scholar 

  47. Souza RB, Powers CM (2009) Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther 39(1):12–19

    PubMed  Google Scholar 

  48. Ward SR, Eng CM, Smallwood LH et al (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467(4):1074–1082

    Article  PubMed  Google Scholar 

  49. Willson JD, Ireland ML, Davis I (2006) Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc 38(5):945–952

    Article  PubMed  Google Scholar 

  50. Willson JD, Kernozek TW, Arndt RL et al (2011) Gluteal muscle activation during running in females with and without patellofemoral pain syndrome. Clin Biomech (Bristol, Avon) 26(7):735–740

    Article  Google Scholar 

  51. Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon) 21(3):297–305

    Article  Google Scholar 

  52. Zeller BL, McCrory JL, Kibler WB et al (2003) Differences in kinematics and electromyographic activity between men and women during the ­single-legged squat. Am J Sports Med 31(3):449–456

    PubMed  Google Scholar 

  53. Zhang LQ, Xu D, Wang G et al (2001) Muscle strength in knee varus and valgus. Med Sci Sports Exerc 33(7):1194–1199

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Sigward Ph.D., P.T., A.T.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sigward, S.M., Pollard, C.D. (2012). Proximal Risk Factors for ACL Injury: Role of the Hip. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32592-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32592-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32591-5

  • Online ISBN: 978-3-642-32592-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics