Skip to main content

Planarizing Gadgets for Perfect Matching Do Not Exist

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

To reduce a graph problem to its planar version, a standard technique is to replace crossings in a drawing of the input graph by planarizing gadgets. We show unconditionally that such a reduction is not possible for the perfect matching problem and also extend this to some other problems related to perfect matching. We further show that there is no planarizing gadget for the Hamiltonian cycle problem.

Work supported in part by the Indo-German DST-DFG program, DFG grant TH 472/4-1 and DST grant DST/CS/20100251.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M.: On derandomizing tests for certain polynomial identities. In: Proceedings of the Conference on Computational Complexity, pp. 355–359 (2003)

    Google Scholar 

  2. Burke, K.: http://cstheory.stackexchange.com/questions/9587 (2012)

  3. Dahlhaus, E., Hajnal, P., Karpinski, M.: On the parallel complexity of Hamiltonian cycles and matching problem in dense graphs. J. Algorithms 15, 367–384 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dahlhaus, E., Karpinski, M.: Matching and multidimensional matching in chordal and strongly chordal graphs. Disc. Appl. Math. 84, 79–91 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Datta, S., Kulkarni, R., Limaye, N., Mahajan, M.: Planarity, determinants, permanents, and (unique) matchings. ACM Trans. Comput. Theory, 10:1–10:20 (2010)

    Google Scholar 

  6. Datta, S., Kulkarni, R., Roy, S.: Deterministically isolating a perfect matching in bipartite planar graphs. Theor. Comput. Syst. 47, 737–757 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Datta, S., Kulkarni, R., Tewari, R.: Perfect matching in bipartite planar graphs is in UL. Technical Report TR10-201, ECCC (2011)

    Google Scholar 

  8. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique maximum matching algorithms. J. Algorithms 40(2), 159–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gasarch, W.: Is there a nice gadget for showing planar HC is NPC? Computational Complexity Blog (2012), http://blog.computationalcomplexity.org/2012/01/is-there-nice-gadget-for-showing-planar.html

  13. Hoang, T.M.: On the matching problem for special graph classes. In: Proceedings of the Conference on Computational Complexity, pp. 139–150 (2010)

    Google Scholar 

  14. Hoang, T.M., Mahajan, M., Thierauf, T.: On the Bipartite Unique Perfect Matching Problem. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 453–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Hopcroft, J., Karp, R.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karpinski, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problems. Oxford University Press (1998)

    Google Scholar 

  17. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoret. Physics, pp. 43–110. Academic Press (1967)

    Google Scholar 

  18. Kozen, D.C., Vazirani, U.V., Vazirani, V.V.: NC Algorithms for Comparability Graphs, Interval Graphs, and Testing for Unique Perfect Matchings. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 496–503. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  19. Kozen, D.: The Design and Analysis of Algorithms. Springer (1991)

    Google Scholar 

  20. Kulkarni, R., Mahajan, M., Varadarajan, K.: Some perfect matchings and perfect half-integral matchings in NC. Chic. J. Theor. Comput. 2008(4) (2008)

    Google Scholar 

  21. Lev, G., Pippenger, M., Valiant, L.: A fast parallel algorithm for routing in permutation networks. IEEE Trans. Computers 30, 93–100 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Lovasz, L., Plummer, M.D.: Matching theory. North-Holland (1986)

    Google Scholar 

  23. Mahajan, M., Varadarajan, K.R.: A new NC-algorithm for finding a perfect matching in bipartite planar and small genus graphs. In: 32th ACM Symp. Theo. Comput (STOC), pp. 351–357. ACM Press (2000)

    Google Scholar 

  24. Micali, S., Vazirani, V.: An \({O}(\sqrt{|v|}\cdot{|E|})\) algorithm for finding maximum matching in general graphs. In: FOCS, pp. 17–27 (1980)

    Google Scholar 

  25. Miller, G.L., Naor, J.S.: Flow in planar graphs with multiple sources and sinks. SIAM J. Comput. 24, 1002–1017 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. Combinatorica 7, 105–113 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree problems. J. ACM 29, 285–309 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vazirani, V.: NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Inf. Comput. 80, 152–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vazirani, V.: A theory of alternating paths and blossoms for proving correctness of the \({O}(\sqrt{V}{E})\) general graph maximum matching algorithm. Combinatorica 14, 71–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuster, R.: Almost exact matchings. Algorithmica 63(1-2), 39–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurjar, R., Korwar, A., Messner, J., Straub, S., Thierauf, T. (2012). Planarizing Gadgets for Perfect Matching Do Not Exist. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics