A Toolkit for Proving Limitations of the Expressive Power of Logics

  • Nicole Schweikardt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

Zero-one laws, Ehrenfeucht-Fraïssé games, locality results, and logical reductions belong to the, by now, standard methods of Finite Model Theory, used for showing non-expressibility in certain logics (cf., e.g., the textbooks [1,2] or the entries in the Encyclopedia of Database Systems [3]).

More recently, the close connections between logic and circuits, along with strong lower bound results obtained in circuit complexity, have led to new lower bounds on the expressiveness of logics (cf., e.g., [4,5,6,7]). In particular, [4] solved a long standing open question of Finite Finite Model Theory, asking about the strictness of the bounded variable hierarchy of first-order logic on finite ordered graphs.

Keywords

Expressive Power Logical Reduction Closure Property Circuit Complexity Tree Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Libkin, L.: Elements of Finite Model Theory. Springer (2004)Google Scholar
  2. 2.
    Ebbinghaus, H.-D., Flum, J.: Finite model theory. Springer (1995)Google Scholar
  3. 3.
    Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems. Springer (2009)Google Scholar
  4. 4.
    Rossman, B.: On the constant-depth complexity of k-clique. In: Proc. 40th Annual ACM Symposium on the Theory of Computing (STOC 2008), pp. 721–730. ACM (2008)Google Scholar
  5. 5.
    Anderson, M., van Melkebeek, D., Schweikardt, N., Segoufin, L.: Locality of Queries Definable in Invariant First-Order Logic with Arbitrary Built-in Predicates. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 368–379. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Anderson, M., van Melkebeek, D., Schweikardt, N., Segoufin, L.: Locality from circuit lower bounds. To appear in SIAM Journal on Computing (2012)Google Scholar
  7. 7.
    Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential Lower Bounds and Separation for Query Rewriting. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 263–274. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame structures. Journal of Symbolic Logic 74(1), 168–186 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Schweikardt, N., Segoufin, L.: Addition-invariant FO and regularity. In: Proc. 25th IEEE Symposium on Logic in Computer Science (LICS), pp. 273–282 (2010)Google Scholar
  10. 10.
    Harwath, F., Schweikardt, N.: Regular tree languages, cardinality predicates, and addition-invariant FO. In: Proc. 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). LIPIcs, vol. 14, pp. 489–500 (2012)Google Scholar
  11. 11.
    Beauquier, D., Pin, J.-E.: Factors of words. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 63–79. Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicole Schweikardt
    • 1
  1. 1.Goethe-University FrankfurtFrankfurt am MainGermany

Personalised recommendations