Skip to main content

Zero-Knowledge Proofs via Polynomial Representations

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

  • 1417 Accesses

Abstract

Under the existence of commitment schemes with homomorphic properties, we construct a constant-round zero-knowledge proof system for an \(\mathcal NP\)-complete language that requires a number of commitments that is sublinear in the size of the (best known) witness verification predicate. The overall communication complexity improves upon best known results for the specific \(\mathcal NP\)-complete language [1,2] and results that could be obtained using zero-knowledge proof systems for the entire \(\mathcal NP\) class (most notably, [3,2,4]). Perhaps of independent interest, our techniques build a proof system after reducing the theorem to be proved to statements among low-degree polynomials over large fields and using Schwartz-Zippel lemma to prove polynomial identities among committed values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(1), 691–729 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Kilian, J.: A note on efficient proofs and arguments. In: Proceedings of ACM STOC 1992 (1992)

    Google Scholar 

  3. Boyar, J., Brassard, G., Peralta, R.: Subquadratic zero-knowledge. J. ACM 42, 1169–1193 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cramer, R., Damgård, I.: Linear zero-knowledge - a note on efficient zero-knowledge proofs and arguments. In: Proceedings of ACM STOC 1997, pp. 436–445 (1997)

    Google Scholar 

  5. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. SIAM Journal on Computing 18(1) (1989)

    Google Scholar 

  6. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM Journal on Computing 22(6), 1163–1175 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. Journal of Cryptology 9(2), 167–189 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  9. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shamir, A.: IP=PSPACE. J. ACM 39(4), 869–877 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fedyukovych, V.: An argument for Hamiltonicity. In: Conference on Mathematics and Inf. Tech. Security (MaBIT-2008), also Cryptology ePrint Archive, Report 2008/363 (2008)

    Google Scholar 

  13. Fedyukovych, V.: Protocols for graph isomorphism and hamiltonicity. In: Central European Conference on Cryptography (2009)

    Google Scholar 

  14. Micciancio, D., Petrank, E.: Simulatable Commitments and Efficient Concurrent Zero-Knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Cramer, R., Damgård, I.B.: Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge Be for Free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

    Google Scholar 

  16. Chaum, D., Evertse, J.-H., van de Graaf, J.: An Improved Protocol for Demonstrating Possession of Discrete Logarithms and Some Generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)

    Google Scholar 

  17. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  18. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27, 701–717 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Crescenzo, G., Fedyukovych, V. (2012). Zero-Knowledge Proofs via Polynomial Representations. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics