In this paper we give an outline of recent algebraic results concerning theories and models of the untyped lambda calculus.


Equational Theory Universal Algebra Subdirect Product Universal Class Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barendregt, H.P.: The lambda calculus: Its syntax and semantics. North-Holland Publishing Co., Amsterdam (1984)zbMATHGoogle Scholar
  2. 2.
    Bastonero, O., Gouy, X.: Strong stability and the incompleteness of stable models of λ-calculus. Annals of Pure and Applied Logic 100, 247–277 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berline, C.: From computation to foundations via functions and application: The λ-calculus and its webbed models. Theoretical Computer Science 249, 81–161 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Berline, C., Manzonetto, G., Salibra, A.: Effective λ-models versus recursively enumerable λ-theories. Math. Struct. Comp. Science 19, 897–942 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Berry, G.: Stable Models of Typed Lambda-Calculi. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, Springer, Heidelberg (1978)Google Scholar
  6. 6.
    Bigelow, D., Burris, S.: Boolean algebras of factor congruences. Acta Sci. Math. 54, 11–20 (1990)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bucciarelli, A., Ehrhard, T.: Sequentiality and strong stability. In: LICS 1991. IEEE Computer Society Press (1991)Google Scholar
  8. 8.
    Bucciarelli, A., Salibra, A.: Graph lambda theories. Math. Struct. Math. Struct. in Comp. Science Science 18, 975–1004 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Burris, S., Sankappanavar, H.P.: A course in universal algebra. Springer, Berlin (1981)zbMATHCrossRefGoogle Scholar
  10. 10.
    Carraro, A., Salibra, A.: Reflexive Scott Domains are Not Complete for the Extensional Lambda Calculus. In: LICS 2009. IEEE Computer Society Press (2009)Google Scholar
  11. 11.
    Carraro, A., Salibra, A.: On the equational consistency of order-theoretic models of the λ-calculus (forthcoming 2012)Google Scholar
  12. 12.
    Church, A.: A set of postulates for the foundation of logic. Annals of Math. 2, 346–366 (1933)Google Scholar
  13. 13.
    Church, A.: The calculi of lambda conversion. Princeton University Press (1941)Google Scholar
  14. 14.
    Comer, S.: Representations by algebras of sections over Boolean spaces. Pacific Journal of Mathematics 38, 29–38 (1971)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland Publishing Co. (1958)Google Scholar
  16. 16.
    Honsell, F., Ronchi della Rocca, S.: An approximation theorem for topological λ-models and the topological incompleteness of λ-calculus. Journal Computer and System Science 45, 49–75 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kerth, R.: Isomorphisme et équivalence équationnelle entre modèles du λ-calcul. Thèse, Université de Paris 7 (1995)Google Scholar
  18. 18.
    Kerth, R.: On the construction of stable models of λ-calculus. Theoretical Computer Science 269, 23–46 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lusin, S., Salibra, A.: The lattice of lambda theories. Journal of Logic and Computation 14, 373–394 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Manzonetto, G., Salibra, A.: From λ-Calculus to Universal Algebra and Back. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 479–490. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Manzonetto, G., Salibra, A.: Applying universal algebra to lambda calculus. Journal of Logic and Computation 20(4), 877–915 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Pierce, R.S.: Modules over Commutative Regular Rings. Memoirs of AMS (1967)Google Scholar
  23. 23.
    Pigozzi, D., Salibra, A.: Lambda abstraction algebras: representation theorems. Theoretical Computer Science 140, 5–52 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Plotkin, G.D.: On a question of H. Friedman. Information and Computation 126, 74–77 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Salibra, A.: On the algebraic models of lambda calculus. Theoretical Computer Science 249, 197–240 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Salibra, A.: Topological incompleteness and order incompleteness of the lambda calculus. ACM TOCL 4(3) (2003)Google Scholar
  27. 27.
    Salibra, A., Ledda, A., Paoli, F., Kowalski, T.: Boolean-like algebras. Algebra Universalis (to appear)Google Scholar
  28. 28.
    Scott, D.S.: Models for the λ-calculus. In: Toposes, Algebraic Geometry and Logic. LNM, vol. 274, Springer (1972)Google Scholar
  29. 29.
    Scott, D.S.: Lambda calculus: some models, some philosophy. In: The Kleene Symposium. North-Holland (1980)Google Scholar
  30. 30.
    Selinger, P.: Order-incompleteness and finite lambda reduction models. Theoretical Computer Science 309, 43–63 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Vaggione, D.: Varieties in which the Pierce stalks are directly indecomposable. Journal of Algebra 184, 424–434 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonino Salibra
    • 1
  1. 1.DAISUniversità Ca’Foscari VeneziaVeneziaItaly

Personalised recommendations