Model Checking Stochastic Branching Processes

  • Taolue Chen
  • Klaus Dräger
  • Stefan Kiefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

Stochastic branching processes are a classical model for describing random trees, which have applications in numerous fields including biology, physics, and natural language processing. In particular, they have recently been proposed to describe parallel programs with stochastic process creation. In this paper, we consider the problem of model checking stochastic branching process. Given a branching process and a deterministic parity tree automaton, we are interested in computing the probability that the generated random tree is accepted by the automaton. We show that this probability can be compared with any rational number in PSPACE, and with 0 and 1 in polynomial time. In a second part, we suggest a tree extension of the logic PCTL, and develop a PSPACE algorithm for model checking a branching process against a formula of this logic. We also show that the qualitative fragment of this logic can be model checked in polynomial time.

Keywords

Polynomial Time Model Check Natural Language Processing Random Tree Deterministic Parity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. In: IEEE Conference on Computational Complexity, pp. 331–339 (2006)Google Scholar
  2. 2.
    Athreya, K.B., Ney, P.E.: Branching Processes. Springer (1972)Google Scholar
  3. 3.
    Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC 1988, pp. 460–467 (1988)Google Scholar
  4. 4.
    Chen, T., Dräger, K., Kiefer, S.: Model checking stochastic branching processes. Technical report, arxiv.org (2012), http://arxiv.org/abs/1206.1317
  5. 5.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42, 857–907 (1995)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Esparza, J., Gaiser, A., Kiefer, S.: Computing least fixed points of probabilistic systems of polynomials. In: Proceedings of STACS, pp. 359–370 (2010)Google Scholar
  7. 7.
    Esparza, J., Kiefer, S., Luttenberger, M.: Computing the least fixed point of positive polynomial systems. SIAM Journal on Computing 39(6), 2282–2335 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In: LICS 2004, pp. 12–21. IEEE (2004)Google Scholar
  9. 9.
    Etessami, K., Stewart, A., Yannakakis, M.: Polynomial-time algorithms for multi-type branching processes and stochastic context-free grammars. In: Proceedings of STOC, pp. 579–588 (2012)Google Scholar
  10. 10.
    Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. Journal of the ACM 56(1), 1–66 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Etessami, K., Yannakakis, M.: Model checking of recursive probabilistic systems. ACM Transactions on Computational Logic 13(2) (to appear 2012)Google Scholar
  12. 12.
    Harris, T.E.: The Theory of Branching Processes. Springer (1963)Google Scholar
  13. 13.
    Kiefer, S., Wojtczak, D.: On Probabilistic Parallel Programs with Process Creation and Synchronisation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 296–310. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Parts I–III. Journal of Symbolic Computation 13(3), 255–352 (1992)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, pp. 389–455. Springer (1997)Google Scholar
  16. 16.
    Vardi, M.Y.: Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic Approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Taolue Chen
    • 1
  • Klaus Dräger
    • 1
  • Stefan Kiefer
    • 1
  1. 1.University of OxfordUK

Personalised recommendations