Advertisement

The Complexity of Rerouting Shortest Paths

  • Paul Bonsma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

The Shortest Path Reconfiguration problem has as input a graph G (with unit edge lengths) with vertices s and t, and two shortest st-paths P and Q. The question is whether there exists a sequence of shortest st-paths that starts with P and ends with Q, such that subsequent paths differ in only one vertex. This is called a rerouting sequence.

This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it is shown that the problem can be solved in polynomial time, and that shortest rerouting sequences have linear length. For these classes, it is also shown that deciding whether a rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial time.

Keywords

Short Path Polynomial Time Chordal Graph Color Assignment Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the diameter of reconfiguration graphs for vertex colourings. Electronic Notes in Discrete Mathematics 38, 161–166 (2011)CrossRefGoogle Scholar
  2. 2.
    Bonsma, P.: Shortest path reconfiguration is PSPACE-hard. arXiv:1009.3217v1 (2010)Google Scholar
  3. 3.
    Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50), 5215–5226 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Appl. Math. 308(5-6), 913–919 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. European J. Combin. 30(7), 1593–1606 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Surveys in Combinatorics 2005, pp. 153–171. Cambridge Univ. Press (2005)Google Scholar
  8. 8.
    Diestel, R.: Graph theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. 9.
    Eggermont, C.E.J., Woeginger, G.J.: Motion planning with pulley, rope, and baskets. In: STACS 2012. LIPIcs, vol. 14, pp. 374–383 (2012)Google Scholar
  10. 10.
    Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput. 38(6) (2009)Google Scholar
  11. 11.
    Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoret. Comput. Sci. 343(1-2), 72–96 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C., Sideri, M., Uehara, R., Uno, Y.: On the Complexity of Reconfiguration Problems. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 28–39. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12-14), 1054–1065 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of List Edge-Colorings in a Graph. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 375–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theoret. Comput. Sci. 412(39), 5205–5210 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kamiński, M., Medvedev, P., Milanič, M.: Shortest Paths between Shortest Paths and Independent Sets. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 56–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.H., Schäffer, A.A., Yannakakis, M.: On the complexity of local search. In: STOC 1990, pp. 438–445. ACM, New York (1990)CrossRefGoogle Scholar
  19. 19.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. System. Sci. 4, 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paul Bonsma
    • 1
  1. 1.Computer Science DepartmentHumboldt University BerlinGermany

Personalised recommendations