Skip to main content

Mining Popular Patterns from Transactional Databases

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7448)

Abstract

Since the introduction of the frequent pattern mining problem, researchers have extended frequent patterns to different useful patterns such as cyclic, emerging, periodic and regular patterns. In this paper, we introduce popular patterns, which captures the popularity of individuals, items, or events among their peers or groups. Moreover, we also propose (i) the Pop-tree structure to capture the essential information for the mining of popular patterns and (ii) the Pop-growth algorithm for mining popular patterns. Experimental results showed that our proposed tree structure is compact and space efficient and our proposed algorithm is time efficient.

Keywords

  • Data mining
  • knowledge discovery
  • interesting patterns
  • popular patterns
  • useful patterns
  • tree-based mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32584-7_24
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-32584-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  2. Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast Algorithms for Mining Emerging Patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 39–50. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  3. Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends among friends in social networks. In: IEEE DASC 2011, pp. 824–831 (2011)

    Google Scholar 

  4. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)

    Google Scholar 

  5. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of constrained frequent sets. ACM TODS 28(4), 337–389 (2003)

    CrossRef  Google Scholar 

  6. Lee, Y.-K., Kim, W.-Y., Cai, Y.D., Han, J.: CoMine: efficient mining of correlated patterns. In: IEEE ICDM 2003, pp. 581–584 (2003)

    Google Scholar 

  7. Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain data. In: IEEE ICDE 2009, pp. 1663–1670 (2009)

    Google Scholar 

  8. Leung, C.K.-S., Jiang, F.: Frequent Pattern Mining from Time-Fading Streams of Uncertain Data. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 252–264. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  9. Leung, C.K.-S., Sun, L.: A new class of constraints for constrained frequent pattern mining. In: ACM SAC 2012, pp. 199–204 (2012)

    Google Scholar 

  10. Leung, C.K.-S., Tanbeer, S.K.: Fast Tree-Based Mining of Frequent Itemsets from Uncertain Data. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 272–287. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Leung, C.K.-S., Tanbeer, S.K.: Mining Social Networks for Significant Friend Groups. In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA Workshops 2012. LNCS, vol. 7240, pp. 180–192. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  12. Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity mining in time series databases using suffix trees. IEEE TKDE 23(1), 79–94 (2011)

    Google Scholar 

  13. Rashid, M. M., Karim, M. R., Jeong, B.-S., Choi, H.-J.: Efficient Mining Regularly Frequent Patterns in Transactional Databases. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 258–271. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  14. Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern mining: a unified framework. Data Mining and Knowledge Discovery 21(3), 371–397 (2010)

    MathSciNet  CrossRef  Google Scholar 

  15. Xiong, H., Tan, P.-N., Kumar, V.: Hyperclique pattern discovery. Data Mining and Knowledge Discovery 13(2), 219–242 (2006)

    MathSciNet  CrossRef  Google Scholar 

  16. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. DKE 59(3), 603–626 (2006)

    CrossRef  Google Scholar 

  17. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gap requirement from sequences. ACM TKDD, 1(2), art. 7 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leung, C.KS., Tanbeer, S.K. (2012). Mining Popular Patterns from Transactional Databases. In: Cuzzocrea, A., Dayal, U. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2012. Lecture Notes in Computer Science, vol 7448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32584-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32584-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32583-0

  • Online ISBN: 978-3-642-32584-7

  • eBook Packages: Computer ScienceComputer Science (R0)