The Slowdown Hypothesis

  • Alessio Plebe
  • Pietro Perconti
Part of the The Frontiers Collection book series (FRONTCOLL)


The so-called singularity hypothesis embraces the most ambitious goal of Artificial Intelligence: the possibility of constructing human-like intelligent systems. The intriguing addition is that once this goal is achieved, it would not be too difficult to surpass human intelligence. While we believe that none of the philosophical objections against strong AI are really compelling, we are skeptical about a singularity scenario associated with the achievement of human-like systems. Several reflections on the recent history of neuroscience and AI, in fact, seem to suggest that the trend is going in the opposite direction.


Artificial Vision General Intelligence Human Intelligence Intelligent Behavior Scientific Idealization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adorjan, P., Piepenbrock, C., & Obermayer, K. (1999). Contrast adaptation and infomax in visual cortical neurons. Reviews in the Neurosciences, 10, 181–200.Google Scholar
  2. Anderson, M., & Anderson, S. L. (Eds.), (2011). Machine Ethics. Cambridge: Cambridge University Press.Google Scholar
  3. Cadieu, C., Kouh, M., Pasupathy, A., Connor, C. E., Riesenhuber, M., & Poggio, T. (2007). A model of V4 shape selectivity and invariance. Journal of Neurophysiology, 98, 1733–1750.Google Scholar
  4. Campbell, M., Hoane, A. J., & Hsuc, F. (2002). Deep blue. Artificial Intelligence, 134, 57–83.Google Scholar
  5. Chalmers, D. (2010). The singularity: A philosophical analysis. Journal of Consciousness Studies, 17, 7–65.Google Scholar
  6. Deco, G. (2001). Biased competition mechanisms for visual attention in a multimodular neurodynamical system. In S. Wermter, J. Austin, & D. Willshaw (Eds.), Emergent neural computational architectures based on neuroscience: towards neuroscience-inspired computing (pp. 114–126). Berlin: Springer-Verlag.Google Scholar
  7. Dittman, J. S., Kreitzer, A. C., & Regehr, W. G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience, 20, 1374–1385.Google Scholar
  8. Dreyfus, H. (1972). What Computers Can’t Do: A Critique of Artificial Reason. New York: Harper and Row Pub. Inc.Google Scholar
  9. Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind Over Machine: The Power of Human Intuition and the Expertise in the Era of the Computer. New York: The Free Press.Google Scholar
  10. Dufort, P. A., & Lumsden, C. J. (1991). Color categorization and color constancy in a neural network model of V4. Biological Cybernetics, 65, 293–303.Google Scholar
  11. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–221.Google Scholar
  12. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A. et al. (2010). Building Watson: An overview of the DeepQA project. The AI magazine, 31, 59–79.Google Scholar
  13. Gardner, H. (2006). Multiple Intelligences: New Horizons. New York: Basic Books.Google Scholar
  14. Good, I. J. (1965). Speculations concerning the first ultraintelligent machine. In F. L. Alt & M. Rubinoff (Eds.), Advances in Computers (Vol. 6, pp. 31–88). New York: Academic Press.Google Scholar
  15. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. Journal of Physiology, 117, 500–544.Google Scholar
  16. Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.Google Scholar
  17. Jiang, X., Rosen, E., Zeffiro, T., VanMeter, J., Blanz, V., & Riesenhuber, M. (2006). Evaluation of a shape-based model of human face discrimination using fMRI and behavioral techniques. Neuron, 50, 159–172.Google Scholar
  18. McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68, 1384–1400.Google Scholar
  19. Menary, R. (Ed.), (2010). The Extended Mind. Cambridge: MIT Press.Google Scholar
  20. Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: and Integrated Model of Scripts, Lexicon and Memory. Cambridge: MIT Press.Google Scholar
  21. Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sherbondy, A. J., & Singh, R. (2011). Cognitive computing. Communications of the Association for Computing Machinery, 54, 62–71.Google Scholar
  22. Plebe, A. (2007). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.Google Scholar
  23. Plebe, A., & Domenella, R. G. (2006). Early development of visual recognition. BioSystems, 86, 63–74.Google Scholar
  24. Rolls, E. (1992). Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philosophical transactions of the Royal Society B, 335, 11–21.Google Scholar
  25. Rudolph, M., & Desrexhe, A. (2005). An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Computation, 17, 2301–2315.Google Scholar
  26. Rudolph, M., & Desrexhe, A. (2007). An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Computation, 17, 2301–2315.Google Scholar
  27. Searle, J. R. (1980). Mind, brain and programs. Behavioral and Brain Science, 3, 417–424.Google Scholar
  28. Shannon, C. (1950). Programming a computer for playing chess. Philosophical Magazine, 41, 256–275.Google Scholar
  29. Shapiro, L. (2011). Embodied Cognition. London: Routledge.Google Scholar
  30. Simoncelli, E. P., & Heeger, D. J. (1992). A computational model for perception of two-dimensional pattern velocities. Investigative Opthalmology and Visual Science Supplement, 33, 1142.Google Scholar
  31. Tomasello, M. (2009). Why We Cooperate. Cambridge: MIT Press.Google Scholar
  32. van Pelt, J., Carnell, A., de Ridder, S., Mansvelder, H. D., & van Ooyen, A. (2010). An algorithm for finding candidate synaptic sites in computer generated networks of neurons with realistic morphologies. Frontiers in Computational Neuroscience, 4, 1–17.Google Scholar
  33. Vinge, V. (1993). The Coming Technological Singularity: How to Survive in the Post-human Era”. Proc. Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace (pp.11–22). NASA: Lewis Research Center.Google Scholar
  34. von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetic, 14, 85–100.Google Scholar
  35. von der Malsburg, C., & Willshaw, D. J. (1976). A mechanism for producing continuous neural mappings: ocularity dominance stripes and ordered retino-tectal projections. Experimental Brain Research, 1, 463–469.Google Scholar
  36. Wallach, W., & Allen, C. (2008). Moral Machines: Teaching Robots Right from Wrong. Oxford: Oxford University Press.Google Scholar
  37. Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 12, 639–661.Google Scholar
  38. Wilson, M. A., & Bower, J. M. (1989). The simulation of large-scale neural networks. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling (pp. 291–333). Cambridge: MIT Press.Google Scholar
  39. Zhaoping, L. (2005). Border ownership from intracortical interactions in visual area V2. Neuron, 47, 143–153.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Cognitive ScienceMessinaItaly

Personalised recommendations