Retinopathy of Prematurity: Fractal Analysis of Images in Different Stages of the Disease

  • Nebojša T. Milošević
  • Maja Olujić
  • Ana Oros
  • Herbert F. Jelinek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 187)


Retinopathy of prematurity is a potentially blinding proliferative disease of the retinal vasculature that affects premature infants with low birth weights. This paper explores the possibility of applying fractal analysis to images of blood vessels in the human retinae with three types of retinopathy. Although the fractal analysis suggests that the retinal images with different grade of retinopathy are more complex than those without retinopathy, this technique cannot completely distinguish retinal vessels in a patient with inactive and active retinopathy. Furthermore, the fractal dimension of retinal images in children with diagnosed aggressive retinopathy is higher than the fractal dimensions of the same images after laser surgery. Our results lead to the conclusion that the blood vessels in the retinae with aggressive retinopathy are more complex, irregular in shape and have a higher degree of vessel aberration than those vessels with ‘typical’ retinopathy.


Blood vessel Box-counting method Fractal analysis Human retina Medical imaging Retinal vasculature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keshet, E.: Preventing pathological regression of blood vessels. J. Clin. Invest. 112, 27–29 (2003)Google Scholar
  2. 2.
    Upalakalin, J.N., Hemo, I., Dehio, C., Keshet, E., Benjamin, L.E.: Survival mechanisms during vascular remodeling. Cold Spring Harb. Symp. Quant. Biol. 67, 181–187 (2002)CrossRefGoogle Scholar
  3. 3.
    Cryotherapy for Retinopathy of Prematurity Cooperative Group: Multicenter trial for cryotherapy for retinopathy of prematurity. Ophthalmological outcomes at 10 years. Arch. Ophthalmol. 119, 1110–1118 (2001)Google Scholar
  4. 4.
    Cryotherapy for Retinopathy of Prematurity Cooperative Group: Multicentre trial for cryotherapy for retinopathy of prematurity: preliminary results. Arch. Ophthalmol. 106, 471–479 (1988)Google Scholar
  5. 5.
    Azuma, N., Ishikawa, K., Hama, Y., Hiraoka, M., Suzuki, Y., Nishina, S.: Early vitreous surgery for aggressive posterior retinopathy of prematurity. Am. J. of Ophthalmol. 142, 636–643 (2006)CrossRefGoogle Scholar
  6. 6.
    Olujić, M., Milošević, N.T., Oros, A., Jelinek, H.F.: Aggresive posterior retinopthy of prematurity: fractal analysis of images before and after laser surgery. In: Dumitrache, I. (ed.) Proceedings CSCS-18, vol. 2, pp. 877–881. Editura Politehnica Press, Bucharest (2011)Google Scholar
  7. 7.
    Milošević, N.T., Ristanović, D., Rajković, K.: Mathematical model of box-counting analysis in the human dentate nucleus during development. In: Book of Abstracts of Talks Presented at Mini-Symposia at the 8th European Conference on Mathematical and Theoretical Biology, and Annual Meeting of the Society for Mathematical Biology, Kraków, Poland, p. 435 (2011)Google Scholar
  8. 8.
    Fernández, E., Jelinek, H.F.: Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24, 309–321 (2001)CrossRefGoogle Scholar
  9. 9.
    Milošević, N.T., Krstonošić, B., Ristanović, D., Gudović, R.: Fractal analysis of neuronal dendritic branching pattern in the human neostriatum: a revised classification scheme. In: Dumitrache, I. (ed.) Proceedings CSCS-18, vol. 2, pp. 871–876. Editura Politehnica Press, Bucharest (2011)Google Scholar
  10. 10.
    Ristanović, D., Milošević, N.T., Stefanović, B.D., Marić, D.L., Rajković, K.: Morphology and classification of large neurons in the adult human dentate nucleus: a qualitative and quantitative analysis of 2D images. Neurosci. Res. 67, 1–7 (2010)CrossRefGoogle Scholar
  11. 11.
    Jelinek, H.F., Fernández, E.: Neurons and fractals: how reliable and useful are calculations of fractal dimensions? J. Neurosci. Meth. 81, 9–18 (1998)CrossRefGoogle Scholar
  12. 12.
    Smith Jr., T.G., Lange, G.D., Marks, W.B.: Fractal methods and results in cellular morphology: dimensions, lacunarity and multifractals. J. Neurosci. Meth. 69, 123–136 (1996)CrossRefGoogle Scholar
  13. 13.
    Milošević, N.T., Ristanović, D., Jelinek, H.F., Gudović, R., Marić, D.: The Morphology and Cell Classification in The Human Dentate Nucleus: a Fractal Analysis Study. In: Dumitrache, I. (ed.) Proceedings CSCS-17, vol. 3, pp. 54–57. Editura Politechnica Press, Bucharest (2009)Google Scholar
  14. 14.
    Jelinek, H.F., Milošević, N.T., Ristanović, D.: The Morphology of Alpha Ganglion Cells in Mammalian Species: a Fractal Analysis Study. J. CEAI 12, 3–9 (2010)Google Scholar
  15. 15.
    Milošević, N.T., Ristanović, D., Stanković, J.B., Gudović, R.: Fractal analysis of dendritic arborisation patterns of stalked and islet neurons in substantia gelatinosa of different species. Fractals 15, 1–7 (2007)CrossRefGoogle Scholar
  16. 16.
    Committee for the Classification of Retinopathy of Prematurity: An international classification of retinopathy of prematurity. Arch. Ophthalmol. 102, 1130–1134 (1984)Google Scholar
  17. 17.
    Committee for the Classification of Retinopathy of Prematurity: The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 123, 991–999 (2005)Google Scholar
  18. 18.
    Early Treatment for Retinopathy of Prematurity Cooperative Group: Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch. Ophthalmol. 121, 1684–1696 (2003)Google Scholar
  19. 19.
    Guyton, A., Hall, J.: Chapter 17: Local and Humoral Control of Blood Flow by the Tissues. In: Gruliow, R. (ed.) Textbook of Medical Physiology, 11th edn. Elsevier, Philadelphia (2006)Google Scholar
  20. 20.
    Jelinek, H.F., Depardieu, C., Lucas, C., Cornforth, D., Huang, W., Cree, M.J.: Towards vessel characterization in the vicinity of the optic disk in digital retinal images. In: Proceeding of Image and Vision Computing New Zealand 2005, Otago, New Zealand, pp. 351–357 (2005)Google Scholar
  21. 21.
    Nekovei, R., Sun, Y.: Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans. Neur. Net. 6, 64–72 (1995)CrossRefGoogle Scholar
  22. 22.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25, 1214–1222 (2006)CrossRefGoogle Scholar
  23. 23.
    Gao, X.W., Bharath, A., Stanton, A., Hughes, A., Chapman, N., Thom, S.: Quantification and characterisation of arteries in retinal images. Comp. Meth. Prog. Biomed. 63, 133–146 (2000)CrossRefGoogle Scholar
  24. 24.
    Cesar Jr., R.M., Jelinek, H.F.: Segmentation of retinal fundus vasculature in nonmydriatic camera images using wavelets. In: Suri, J.S., Laxminarayan, S. (eds.) Angiography and Plaque Imaging, pp. 193–224. CRC Press, Boca Raton (2003)Google Scholar
  25. 25.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridgebased vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23, 501–509 (2004)CrossRefGoogle Scholar
  26. 26.
    Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, R.L.: Measurement of retinal vessel widths from fundus images based on 2-D modeling. IEEE Trans. Med. Imag. 23, 1196–1204 (2004)CrossRefGoogle Scholar
  27. 27.
    Karperien, A., Jelinek, H.F., Leandro, J.J.G., Soares, J.V.B., Cesar Jr., R.M., Luckie, A.: Automated detection of proliferative retinopathy in clinical practice. Clin. Ophtalmol. 2, 109–122 (2008)Google Scholar
  28. 28.
    Landini, G.: Quantitative analysis of the epithelial lining architecture in radicular cysts and odontogenic keratocysts. Head Face Med. 2, 1–9 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Daxer, A.: Fractals and retinal vessels. Lancet 339, 618 (1992)CrossRefGoogle Scholar
  30. 30.
    Cornforth, D., Jelinek, H.F., Peichl, L.: Fractop: a tool for automated biological image classifi cation. In: 6th AI Australasia-Japan Joint Workshop, pp. 141–148. Australian National University, Canberra (2002)Google Scholar
  31. 31.
    Masters, B.R.: Fractal analysis of the vascular tree in the human retina. Annual Rev. Biomed. Eng. 6, 427–452 (2004)CrossRefGoogle Scholar
  32. 32.
    Iannaccone, P.M., Khokha, M.: Fractal geometry in biological systems: an analytical approach. CRC Press, Boca Raton (1995)Google Scholar
  33. 33.
    Family, F., Masters, B.R., Platt, D.E.: Fractal pattern formation in human retinal vessels. Physica D 38, 98–103 (1989)CrossRefGoogle Scholar
  34. 34.
    Masters, B.R.: Fractal analysis of human retinal vessels. In: SPIE Proc., vol. 1357, pp. 250–256 (1989)Google Scholar
  35. 35.
    Landini, G., Misson, G.P., Murray, P.I.: Fractal analysis of the normal human retinal fluorescein angiogram. Curr. Eye Res. 12, 23–27 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nebojša T. Milošević
    • 1
  • Maja Olujić
    • 2
  • Ana Oros
    • 2
  • Herbert F. Jelinek
    • 3
  1. 1.Department of Biophysics, Medical FacultyUniversity of Belgrade, KCS Institute of Biophyscis pp. 129Belgrade 102Serbia
  2. 2.Department of Ophtalmology, Medical FacultyUniversity of Novi SadNovi SadSerbia
  3. 3.School of Community HealthCharles Sturt UniversityAlburyAustralia

Personalised recommendations