Continuous-Wave Photoacoustic-Based Sensor for the Detection of Aqueous Glucose: Towards Non-invasive and Continuous Glycemia Sensing

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 2)


Measurement of blood glucose levels (BGLs) is a basic procedure that diabetic patients need to perform several times a day. The conventional standard protocol for on-site measurement, despite several advantages such as portability, low cost, fast response time, and ease of operation, is based on the finger-prick technique to extract blood samples. This process is invasive and cannot provide continuous monitoring.

Towards the achievement of non-invasive and continuous BGL monitoring, we have developed two measurement methods based on the continuous-wave photoacoustic (CW-PA) protocol and we performed preliminary in vitro tests with aqueous solutions. The first method relies on the measurement of the frequency shift induced by the change in the composition of the propagation medium. This method is equivalent to an acoustic velocity measurement and provides high sensitivity but no selectivity to glucose compound. The second approach utilizes simultaneous optical excitation at two wavelengths for compound-selective measurements. After correcting the frequency shift mentioned previously, this protocol allows measurements equivalent to a differential absorption coefficient one at the two wavelengths used. It then combines the advantages of absorption spectroscopy without the limitation from scattering due to the use of acoustic detection. Furthermore, the combination of the two methods can be generalized to systems involving more than one changing parameter by using not only two optical wavelengths for the excitation sequence but also several pairs of wavelength sequentially.

These methods then represent an important step forward the non-invasive, selective, and continuous measurements of glucose compound concentrations from a complex mixture, typically blood.


photoacoustic method continuous blood glucose level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wild, S., Roglic, G., Green, A., Sicree, R., King, H.: Global prevalence of diabetes, Estimates for the year 2000 and projections for 2030. Diabetes Care 27(5), 1047–1053 (2004)CrossRefGoogle Scholar
  2. 2.
    World Health Organization (2011),
  3. 3.
    Roglic, G., Unwin, N., Bennett, P.H., Mathers, C., Tuomilehto, J., Nag, S., Connolly, V., King, H.: The burden of mortality attributable to diabetes. Diabetes Care 28(9), 2130–2135 (2005)CrossRefGoogle Scholar
  4. 4.
    World Health Organization, International Diabetes Federation (2004),
  5. 5.
    The Expert Committee on the Diagnosis and Classification if Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus, Diabetes Care 26(11), 3160–3167 (2003)Google Scholar
  6. 6.
    American Diabetes Association. Standards of medical care in diabetes, Diabetes Care 28 (supp.1), s4–s36 (2005)Google Scholar
  7. 7.
    Consensus Development Panel. Consensus statement on self-monitoring of blood glucose. Diabetes Care 10, 95–99 (1987)Google Scholar
  8. 8.
    Kirk, J.K., Stegner, J.: Self-monitoring of blood glucose: practical aspects. J. Diabetes Sci. Technol. 4(2), 435–439 (2010)Google Scholar
  9. 9.
    Rubin, A.L.: Diabetes for dummies, 3rd edn. Wiley Publishing, Inc. (2008)Google Scholar
  10. 10.
    Thorsell, A., Gordon, M., Jovanovic, L.: Continuous glucose monitoring: a stepping stone in the journey towards a cure for diabetes. J. Maternal-Fetal and Neonatal Medicine 15(1), 15–25 (2004)CrossRefGoogle Scholar
  11. 11.
    Sachedina, N., Pickup, J.C.: Performance assessment of the Medtronic-MiniMed continuous glucose monitoring system and its use for measurement of glycaemic control in type 1 diabetic subjects. Diabetic Medicine 20(12), 1012–1015 (2003)CrossRefGoogle Scholar
  12. 12.
    Ginsberg, B.H.: An overview of minimally invasive technologies. Clin. Chem. 38(9), 1596–1600 (1992)Google Scholar
  13. 13.
    Kost, J., Mitragotri, S., Gabbay, R.A., Pishko, M., Langer, R.: Transdermal monitoring of glucose and other analytes using ultrasound. Nature Medicine 6(3), 347–350 (2000)CrossRefGoogle Scholar
  14. 14.
    Chuang, H., Taylor, E., Davison, W.: Clinical evaluation of a continuous minimally invasive glucose flux sensor placed over ultrasonically permeated skin. Diabetes Techn. & Therapeutics 6(1), 21–30 (2004)CrossRefGoogle Scholar
  15. 15.
    Erdman, C.P., Goldman, S.M., Lynn, P.J., Ward, M.C.: A minimally inva-sive device for continuous glucose monitoring in infants. J. Med. Devices 2(2), 027518 (2008)CrossRefGoogle Scholar
  16. 16.
    Hanaire, H.: Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop. Diabetes & Metabolism 32(5), 534–538 (2006)CrossRefGoogle Scholar
  17. 17.
    Steil, G.M., Rebrin, K., Goode Jr., P.V., Mastrototaro, J.J., Purvis, R.E., Van Antwerp, W.P., Shin, J.J., Talbot, C.D.: Closed loop system for controlling insulin infusion. US Patent US006558351B1 (2003)Google Scholar
  18. 18.
    Chee, F., Fernando, T.: Closed-loop control of blood glucose. LNCIS, vol. 368. Springer Ed. (2007) ISBN 3-540-74030-9Google Scholar
  19. 19.
    Heo, Y.J., Shibata, H., Okitsu, T., Kawanishi, T., Takeuchi, S.: Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. PNAS 1104954108 (2011)Google Scholar
  20. 20.
    Voskerician, G., Anderson, J.: Foreign body reaction. Wiley Encyclopedia of Biomedical Engineering (2006) ISBN 9780471740360Google Scholar
  21. 21.
    Ma, K., Yuen, J.M., Shah, N.C., Walsh Jr., J.T., Glucksberg, M.R., Van Duyne, R.P.: In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low in-cident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83(23), 9146–9152 (2011)CrossRefGoogle Scholar
  22. 22.
    Wagner, J., Malchoff, C., Abbott, G.: Invasiveness as a barrier to self-monitoring of blood glucose in diabetes. Diabetes Techn. & Therapeutics 7(4), 612–619 (2005)CrossRefGoogle Scholar
  23. 23.
    Pickup, J.C., Hussain, F., Evans, N.D., Sachedina, N.: In vivo glucose monitoring: the clinical reality and the promise. Biosens. and Bioelect. 20, 1897–1902 (2005)CrossRefGoogle Scholar
  24. 24.
    Heinemann, L., Schmelzeisen-Redeker, G.: Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors. Diabetologia 41, 848–854 (1998)CrossRefGoogle Scholar
  25. 25.
    Khalil, O.S.: Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Techn. & Therapeutics 6(5), 660–697 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tura, A., Maran, A., Pacini, G.: Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice 77, 16–40 (2007)CrossRefGoogle Scholar
  27. 27.
    MacKenzie, H.A., Ashton, H.S., Shen, Y.C., Lindberg, J., Rae, P., Quan, K.M., Spiers, S.: Blood glucose measurements by photoacoustics. Biomedical Opt. Biomedical Opt. Spectroscopy and Diagnostics/Therapeutic Laser App. 22, 156–159 (1998)Google Scholar
  28. 28.
    Zhao, Z.: Pulse photoacoustic techniques and glucose determination in human blood and tissue. Oulu University Press, Oulu (2002) ISBN 951-42-6689-7Google Scholar
  29. 29.
    Weiss, R., Yegorchikov, Y., Shusterman, A., Raz, I.: Noninvasive continuous glucose monitoring using photoacoustic technology- Results from the first 62 subjects. Diabetes Technology and Therapeutics 9(1), 68–74 (2007)CrossRefGoogle Scholar
  30. 30.
    Patel, C.K.N., Tam, A.C.: Pulsed optoacoustic spectroscopy of condensed matter. Rev. of Modern Physics 53(3), 517–553 (1981)CrossRefGoogle Scholar
  31. 31.
    Spanner, G., Niessner, R.: New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes. Fresenius J. Anal. Chem. 354, 306–310 (1996)Google Scholar
  32. 32.
    Tam, A.C.: Applications of photoacoustic sensing techniques. Reviews of Modern Physics 58(2), 381–431 (1986)CrossRefGoogle Scholar
  33. 33.
    Atalar, A.: Photoacoustic effect as a liquid absorbance detector. Applied Optics 19(18), 3204–3210 (1980)CrossRefGoogle Scholar
  34. 34.
    Miklos, A., Hess, P., Bozoki, Z.: Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Review of Scientific Instruments 72(4), 1937–1955 (2001)CrossRefGoogle Scholar
  35. 35.
    Hippler, M., Mohr, C., Keen, K.A., McNaghten, E.D.: Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy. J. Chem. Phys. 133, 044308 (2010)CrossRefGoogle Scholar
  36. 36.
    Havey, D.K., Bueno, P.A., Gillis, K.A., Hodges, J.T., Mulholland, G.W., van Zee, R.D., Zachariah, M.R.: Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols. Anal. Chem. 82(19), 7935–7942 (2010)CrossRefGoogle Scholar
  37. 37.
    Camou, S., Ueno, Y., Tamechika, E.: Towards non-invasive and continuous blood sugar sensor: detection of aqueous glucose based on CW-photoacoustic proto-col. In: Proceeding of IEEE Sensors 2010, Hawaii, USA (2010)Google Scholar
  38. 38.
    Camou, S., Haga, T., Tajima, T., Tamechika, E.: Detection of aqueous glucose based on a cavity size- and optical-wavelength-independent continuous-wave photoacoustic technique. Anal. Chem. 84(11), 4718–4724 (2012)CrossRefGoogle Scholar
  39. 39.
    Hao, L.-Y., Ren, Z., Shi, Q., Wu, J.-L., Zheng, Y., Zheng, J.-J., Zhu, Q.-S.: A new cylindrical photoacoustic cell with improved performance. Review of Scientific Instruments 73(2), 404–410 (2001)CrossRefGoogle Scholar
  40. 40.
    Shen, Y., Spiers, S., MacKenzie, H.A.: Time resolved aspects of pulsed photoacoustic spectroscopy. Analytical Sciences 17, Special Issue, 221–222 (2001)CrossRefGoogle Scholar
  41. 41.
    Zips, A., Faust, U.: Determination of biomass by ultrasonic measurements. Appl. Environ. Microbiol. 55(7), 1801–1807 (1989)Google Scholar
  42. 42.
    Hall, J.W., Pollard, A.: Near-infrared spectrophotometry: a new dimension in clinical chemistry. Clin. Chem. 38(9), 1623–1631 (1992)Google Scholar
  43. 43.
    Chung, H., Arnold, M.A., Rhiel, M., Murhammer, D.W.: Simultaneous measurements of glucose, glutamine, ammonia, lactate, and glutamate in aqueous solutions by near-infrared spectroscopy. Applied Spectroscopy 50(2), 270–276 (1996)CrossRefGoogle Scholar
  44. 44.
    Ward, K.J., Haaland, D.M., Robinson, M.R., Eaton, R.P.: Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy. Applied Spectroscopy 46(6), 959–965 (1992)CrossRefGoogle Scholar
  45. 45.
    Heise, H.M., Marbach, R., Koschinsky, T., Gries, F.A.: Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis. Applied Spectroscopy 48(1), 85–95 (1994)CrossRefGoogle Scholar
  46. 46.
    Spanner, G., Niessner, R.: Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head. Fresenius J. Anal. Chem. 355, 327–328 (1996)Google Scholar
  47. 47.
    Jensen, P.S., Bak, J., Andersson-Engels, S.: Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures. Applied Spectroscopy 57(1), 28–36 (2003)CrossRefGoogle Scholar
  48. 48.
    Allen, K.: Principles and limitations of pulse oximetry in patient monitoring. Nurs. Times 12-18, 100(41), 34–37 (2004)Google Scholar
  49. 49.
    Mendelson, Y.: Pulse oximetry: theory and applications for non-invasive monitoring. Clin. Chem. 38(9), 1601–1607 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NTT Microsystem Integration LaboratoriesMicrosensor Research Group, Nippon Telegraph and Telephone CorporationAtsugiJapan

Personalised recommendations