Skip to main content

Footwear-Based Wearable Sensors for Physical Activity Monitoring

  • Chapter

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 2))

Abstract

Monitoring of posture allocations and activities is important for such applications as physical activity management, energy expenditure estimation, stroke rehabilitation and others. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This chapter presents an overview of a novel wearable footwear sensor (SmartShoe), which is capable of very accurate recognition of most common postures and activities while being minimally intrusive to the subject. SmartShoe relies on capturing information from patterns of heel acceleration and plantar pressure to differentiate weight-bearing and non-weight-bearing activities (such as for example, sitting and standing, walking/jogging and cycling). Validation results obtained in several studies demonstrate applicability to widely varying populations such as healthy individuals and individuals post-stroke, while achieving high (95%-98%) average accuracy of posture and activity classification, high (root-mean-square error of 0.69 METs) accuracy of energy expenditure prediction, and reliable (error of 2.6- 18.6%) identification of temporal gait parameters. High accuracy and minimal intrusiveness of SmartShoe should enable its use in a wide range of research and clinical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flegal, K.M., Carroll, M.D., Kit, B.K., Ogden, C.L.: Prevalence of Obesity and Trends in the Distribution of Body Mass Index Among US Adults, 1999-2010. JAMA 307(5), 491–497 (2012)

    Article  Google Scholar 

  2. Hill, J.O., Wyatt, H.R., Reed, G.W., Peters, J.C.: Obesity and the Environ-ment: Where Do We Go from Here? Science 299(5608), 853–855 (2003)

    Article  Google Scholar 

  3. Levine, J.A., Lanningham-Foster, L.M., McCrady, S.K., Krizan, A.C., Ol-son, L.R., Kane, P.H., Jensen, M.D., Clark, M.M.: Interindividual variation in posture allocation: possible role in human obesity. Science 307(5709), 584–586 (2005)

    Article  Google Scholar 

  4. Shaughnessy, M., Michael, K.M., Sorkin, J.D., Macko, R.F.: Steps After Stroke Capturing Ambulatory Recovery. Stroke 36(6), 1305–1307 (2005)

    Article  Google Scholar 

  5. Fulk, G.D., Reynolds, C., Mondal, S., Deutsch, J.E.: Predicting home and community walking activity in people with stroke. Arch. Phys. Med. Rehabil. 91(10), 1582–1586 (2010)

    Article  Google Scholar 

  6. Levin, M.F., Kleim, J.A., Wolf, S.L.: What Do Motor ‘Recovery’ and ‘Compensation’ Mean in Patients Following Stroke? Neurorehabil. Neural Repair 23(4), 313–319 (2009)

    Google Scholar 

  7. Bonomi, A.G., Plasqui, G., Goris, A.H.C., Westerterp, K.R.: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J. Appl. Physiol. 107(3), 655–661 (2009)

    Article  Google Scholar 

  8. Brage, S., Brage, N., Franks, P.W., Ekelund, U., Wong, M.-Y., Andersen, L.B., Froberg, K., Wareham, N.J.: Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J. Appl. Physiol. 96(1), 343–351 (2004)

    Article  Google Scholar 

  9. Bamberg, S.J.M., Benbasat, A.Y., Scarborough, D.M., Krebs, D.E., Paradiso, J.A.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)

    Article  Google Scholar 

  10. de Niet, M., Bussmann, J.B., Ribbers, G.M., Stam, H.J.: The stroke upper-limb activity monitor: its sensitivity to measure hemiplegic upper-limb activity during daily life. Arch. Phys. Med. Rehabil. 88(9), 1121–1126 (2007)

    Article  Google Scholar 

  11. Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Pärkkä, J., Ermes, M., Korpipää, P., Mäntyjärvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)

    Article  Google Scholar 

  13. Ermes, M., Pärkka, J., Mantyjarvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 12(1), 20–26 (2008)

    Article  Google Scholar 

  14. Lester, J., Choudhury, T., Borriello, G.: A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Havinga, P.J.M., Marin-Perianu, M., Thalen, J.P.: SensorShoe: Mobile Gait Analysis for Parkinson’s Disease Patients (2007)

    Google Scholar 

  16. Jagos, H., Oberzaucher, J.: Development of a Wearable Measurement System to Identify Characteristics in Human Gait - eSHOE -. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1301–1304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Zhang, K., Pi-Sunyer, F.X., Boozer, C.N.: Improving energy expenditure estimation for physical activity. Med. Sci. Sports Exerc. 36(5), 883–889 (2004)

    Article  Google Scholar 

  18. Tharion, W.J., Yokota, M., Buller, M.J., DeLany, J.P., Hoyt, R.W.: Total energy expenditure estimated using a foot-contact pedometer. Med. Sci. Monit. 10(9), CR504–CR509 (2004)

    Google Scholar 

  19. Sazonova, N., Browning, R., Sazonov, E.: Accurate Prediction of Energy Expenditure Using a Shoe-Based Activity Monitor. Medicine & Science in Sports & Exercise 43(7), 1312–1321 (2011)

    Article  Google Scholar 

  20. Fulk, G., Sazonov, E.: Using Sensors to Measure Activity in People with Stroke. Topics in Stroke Rehabilitation 18(6), 746–757 (2011)

    Article  Google Scholar 

  21. Edgar, S.R., Swyka, T., Fulk, G., Sazonov, E.S.: Wearable shoe-based device for rehabilitation of stroke patients. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3772–3775 (2010)

    Google Scholar 

  22. Sazonov, E.S., Fulk, G., Hill, J., Schutz, Y., Browning, R.: Monitoring of Posture Allocations and Activities by a Shoe-Based Wearable Sensor. IEEE Transactions on Biomedical Engineering 58(4), 983–990 (2011)

    Article  Google Scholar 

  23. Brockway, J.M.: Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 41(6), 463–471 (1987)

    Google Scholar 

  24. Sazonov, E., Krishnamurthy, V., Schilling, R.: Wireless Intelligent Sensor and Actuator Network - A Scalable Platform for Time-Synchronous Applications of Structural Health Monitoring. Structural Health Monitoring (April 2010)

    Google Scholar 

  25. Chih-Chung, C., Chih-Jen, L.: LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm

  26. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity Recognition and Monitoring Using Multiple Sensors on Different Body Positions. In: Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, pp. 113–116 (2006)

    Google Scholar 

  27. Saremi, K., Marehbian, J., Yan, X., Regnaux, J.-P., Elashoff, R., Bussel, B., Dobkin, B.H.: Reliability and Validity of Bilateral Thigh and Foot Accelerometry Measures of Walking in Healthy and Hemiparetic Subjects. Neurorehabil. Neural Repair 20(2), 297–305 (2006)

    Article  Google Scholar 

  28. Lau, H., Tong, K., Zhu, H.: Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Human Movement Science 28(4), 504–514 (2009)

    Article  Google Scholar 

  29. Aminian, K., Najafi, B., Büla, C., Leyvraz, P.-F., Robert, P.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. Journal of Biomechanics 35(5), 689–699 (2002)

    Article  Google Scholar 

  30. Staudenmayer, J., Pober, D., Crouter, S.E., Bassett, D.R., Freedson, P.: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J. Appl. Physiol., 00465 (2009)

    Google Scholar 

  31. Crouter, S.E., Clowers, K.G., Bassett, D.R.: A novel method for using accelerometer data to predict energy expenditure. J. Appl. Physiol. 100(4), 1324–1331 (2006)

    Article  Google Scholar 

  32. Choi, L., Chen, K.Y., Acra, S.A., Buchowski, M.S.: Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth. J. Appl. Physiol. 108(2), 314–327 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sazonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sazonov, E. (2013). Footwear-Based Wearable Sensors for Physical Activity Monitoring. In: Mukhopadhyay, S., Postolache, O. (eds) Pervasive and Mobile Sensing and Computing for Healthcare. Smart Sensors, Measurement and Instrumentation, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32538-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32538-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32537-3

  • Online ISBN: 978-3-642-32538-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics