Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives

  • Jerry W. Forbes
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


This chapter overviews the detonation properties in right circular cylinders of non-ideal HE’s. This requires some understanding of 2-D hydrodynamic flow and modified ZND theory for non-ideal HE’s. This chapter will first cover the modified ZND detonation theory for non-ideal HE’s. Then a review of experimental techniques using right circular cylindrical samples will be presented since detonation science’s understanding is primarily based on the large experimental data base from cylindrical samples. This will be followed by curved detonation front theory for right circular cylindrical samples and a brief overview of select 2-D flow conditions.


Shock Front Detonation Wave Detonation Velocity Ammonium Perchlorate Zone Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Cowperthwaite, A model solution for nonideal one-dimensional detonation waves. in Proceedings of the Eighth Symposium (International) on Detonation, NSWC MP 86–194, Albuquerque, 1985, pp. 1025–1031Google Scholar
  2. 2.
    M. Cowperthwaite, An exact solution for axial flow in cylindrically symmetric, steady-state detonation in polytropic explosive with arbitrary rate of decomposition. Phys. Fluid. 6(3), 1357–1378 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    B. Hayes, R.R. McQuire, in Proceedings of Symposium on High Dynamic Pressures,, Commissart a l’Engergie Atomique, Paris, 1978, p. 245Google Scholar
  4. 4.
    W.W. Wood, J.G. Kirkwood, Diameter effect in condensed explosives. The relation between velocity and radius of curvature of the detonation wave. J. Chem. Phys. 22(11), 1920 (1954)CrossRefGoogle Scholar
  5. 5.
    W.C. Davis, B.G. Craig, J.B. Ramsey, Failure of the Chapman-Jouguet theory for liquid and solid explosives. Phys. Fluid. 8, 2169 (1965)CrossRefGoogle Scholar
  6. 6.
    J.B. Bdzil, W.C. Davis, Time dependent detonations (Mathematical model for). Los Alamos Scientific Laboratory Report LA −5926-MS, 1975Google Scholar
  7. 7.
    H.M. Sternberg, L. Hudson, Equations of states for underwater explosives. The 1987 International Symposium Pyrotechnics and Explosives. (China Academic Press, Beijing, 1987)Google Scholar
  8. 8.
    R.H. Guirguis, P.J. Miller, Time-dependent equation of state for aluminized underwater explosives. in Proceedings of the Tenth Symposium (International) on Detonation, ONR OCNR 33395–12, Boston, 1993, p. 675Google Scholar
  9. 9.
    P.J. Miller, A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives. Mat. Res. Soc. Symp. Proc. 418, 413–420 (1996)CrossRefGoogle Scholar
  10. 10.
    A.W. Cambell, R. Engelke, The diameter effect in high-density heterogeneous explosives. in Proceedings of the, Sixth Detonation (International) Symposium on Detonation, Coronado, 1976, p. 642Google Scholar
  11. 11.
    M. Cowperthwaite, W.H. Zwisler, The JCZ equations of state for detonation products and the incorporation into the TIGER code. in Proceedings of the 6th Symposium (International) on Detonation, Coronado, 24–27 Aug 1976, pp. 162Google Scholar
  12. 12.
    W.M. Howard, L.E. Fried, P.C. Souers, Kinetic modeling of non-ideal explosives with CHEETAH. in Proceedings of the Eleventh International Detonation Symposium, Snowmass, 31 Aug–4 Sept 1998Google Scholar
  13. 13.
    J.W. Forbes, E.R. Lemar, Detonation wave velocity and curvature of a plastic-bonded, nonideal explosive PBXN-111 as a function of diameter and confinement. J. Appl. Phys. 84(12), 6600 (1998)CrossRefGoogle Scholar
  14. 14.
    J.W. Forbes, E.R. Lemar, G.T. Sutherland, R.N. Baker, Detonation wave curvature, corner turning, and unreached Hugoniot of PBXN-111, NSWCDD/TR-92/164, 19 Mar 1992 (online DTIC AD-A263-898)Google Scholar
  15. 15.
    B.M. Dobatz, P.C. Crawford, LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Stimulants. UCRL-52997 Change 2 (Lawrence Livermore National Laboratory, Livermore, 1985). 31 Jan 1985Google Scholar
  16. 16.
    T.R. Gibbs, A. Popolato, LASL Explosive Property Data (University of California Press, Berkeley, 1980)Google Scholar
  17. 17.
    A. Dremin, Towards Detonation (Springer, New York, 1999)CrossRefGoogle Scholar
  18. 18.
    C.M. Tarver, E.M. McGuire, Reactive flow modeling of the interactions of TATB detonation Waves with inert materials. in Proceedings of the Twelfth International Detonation Symposium, ONR 333-05-2, San Diego, 2002, pp. 641–649Google Scholar
  19. 19.
    D.L. Kennedy, Multi-valued normal shock velocity versus curvature relationships for highly non-ideal explosives. in Proceedings of the Eleventh International Detonation Symposium, ONR 33300–5, Snowmass, 1998, pp. 181–192Google Scholar
  20. 20.
    E.R. Lemar, J.W. Forbes, M. Cowperthwaite, Oblique shock wave calculations for detonation waves in brass confined and bare PBXN-111 cylindrical charges. in Shock Compression of Condensed Matter-1997, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes, AIP Conference Proceedings, Amherst 1998Google Scholar
  21. 21.
    R. Duff, E. Houston, J. Chem. Phys. 23, 1268 (1955)CrossRefGoogle Scholar
  22. 22.
    J. Deal, Chem. Phys. 27, 796 (1957)Google Scholar
  23. 23.
    V.A. Veretennikov, A.N. Dremin, O.K. Rozanov, K.K. Shevedov, Combust. Explos. Shock Waves (USSR) 3 pp. 1–8 (1967)Google Scholar
  24. 24.
    S.A. Sheffield, D.D. Bloomquist, C.M. Tarver, Subnanosecond measurements of detonation fronts in solid high explosives. J. Chem. Phys. 80(8), 3831 (1984)CrossRefGoogle Scholar
  25. 25.
    N.C. Coleburn, Chapman-Jouguet Pressures of Several Pure and Mixed Explosives. NOLTR 64–58, 25 June 1964 (online DTIC AD0603540)Google Scholar
  26. 26.
    M.H. Rice, J.M. Walsh, J. Chem. Phys. 26, 824–830 (1957)CrossRefGoogle Scholar
  27. 27.
    M. Finger, E. Lee, F.H. Helm, B. Hayes, H. Hornig, R. McGuire, M. Kahara, The effect of elemental compositions on the detonation behavior of explosives. in Proceedings of the Sixth Symposium (International) on Detonation, Naval Surface Weapons Center, White Oak, 24–27 Aug 1976, pp. 710–722Google Scholar
  28. 28.
    B. Hayes, C.M. Tarver, Interpolation of detonation parameters from experimental particle velocity records. in Proceedings of the Seventh Symposium (International) on Detonation, Naval Academy, Annapolis, 24–27 Aug 1976, p. 1029Google Scholar
  29. 29.
    B. Hayes, J.N. Fritz, Measurement of mass motion in detonation by an axially-symmetric electromagnetic technique. in Proceedings of the Fifth Symposium (International) on Detonation, ACR-184, Pasadena, 1970, pp. 447–454Google Scholar
  30. 30.
    N.L. Coleburn, T.P. Liddiard Jr., Hugoniot equations of state of several unreacted explosives. J. Chem. Phys. 44, 1929–1936 (1966)CrossRefGoogle Scholar
  31. 31.
    P.A. Urtiew, B. Hayes, Parametric study of the dynamic JWL-EOS for detonation products. Combust. Explo. Shock Waves 27, 505–514 (1991)CrossRefGoogle Scholar
  32. 32.
    S.A. Sheffield, D.D. Bloomquist, Subnanosecond velocity interferometer measurements of detontating PBX-9502, in discussions. in Proceedings of the Seventh Symposium (International) on Detonation, Annapolis, 16–19 June 1981, pp. 1084–1085Google Scholar
  33. 33.
    D.E. Hooks, D.B. Hayes, D.E. Hare, D. Reisman, K.S. Vandersall, J.W. Forbes, C. Hall, Isentropic compression of cyclotetramethylenetetanitramine (HMX) single crystals to 50 GPa. J. Appl. Phys. 99, 124901 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Cowperthwaite, J.T. Rosenberg, Lagrange gage studies of detonation in some intermolecular EA based explosives. in Proceedings of the Eighth Symposium (International) on Detonation, Albuerquerque, 15–19 July 1985, p. 111Google Scholar
  35. 35.
    E.L. Lee, C.M. Tarver, Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluid. 23(12), 2362 (1980)CrossRefGoogle Scholar
  36. 36.
    P.A. Urtiew, A.S. Kusubov, R.E. Duff, Cellular structure of detonation in nitromethane. Combust. Flame 14, 117–122 (1970)CrossRefGoogle Scholar
  37. 37.
    P.A. Urtiew, From cellular structure for failure waves in liquid detonations. Combust. Flame 25, 241–245 (1975)CrossRefGoogle Scholar
  38. 38.
    P.A. Urtiew, C.M. Tarver, Effects of cellular structure on the behavior of gaseous detonation waves under transient conditions. in Gas Dynamics of Detonations and Explosions, ed by J.R. Bowen, N. Manson A.K. Oppenheim, R.I. Soloukhin, Vol. 75 of Progress in Astronautics and Aeronautics, 1981Google Scholar
  39. 39.
    F. Pintgen, C.A. Ecket, J.M. Austin, J.E. Shepherd, Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–219 (2003)Google Scholar
  40. 40.
    J.G. Kirkwood, W.W. Wood, Structure of a steady-state plane detonation wave with finite rate. J. Chem. Phys. 22(11), 1915 (1954)CrossRefGoogle Scholar
  41. 41.
    J.B. Bdzil, W. Ficket, D.S. Stewart, Detonation shock dynamics: A new approach to modeling multi-dimensional detonation waves. in Proceedings of the Ninth Symposium (International) on Detonation, Portland, 28 Aug–1 Sep 1989Google Scholar
  42. 42.
    T.D. Aslam, J.B. Bdzil, L.G. Hill, Extensions to DSD theory: Analysis of PBX 9502 rate stick data. in Proceedings of the Eleventh International Detonation Symposium, ONR 33300–5, Snowmass, 1998, pp. 21–29Google Scholar
  43. 43.
    J.D. Yao, S. Stewart, On the dynamics of multi-dimensional detonation. J. Fluid Mech. 309, 225–275 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    G.T. Sutherland, E.R. Lemar, J.W. Forbes, E. Anderson, P. Miller, K.D. Ashwell, R.N. Baker, T.P. Liddard, Shock wave and detonation wave response of selected HMX based research explosives with HTPB binder systems, in High-Pressure Science and Technology-1993, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross. AIP Conference Proceedings, vol. 309 (AIP, New York, 1993), pp. 1413–1416Google Scholar
  45. 45.
    G.T. Sutherland, E.R. Lemar, M.H. Marcus, Analysis of wave curvature experiments for monomodal explosives with different crystal quality and particle size characteristics. AIP Conf. Proc. 955, 873–876 (2007)Google Scholar
  46. 46.
    D.L. Kennedy, D.A. Jones, Modelling shock initiation and detonation in the non-ideal explosive PBXW-115. in Proceedings of the Tenth International Detonation Symposium, ONR 33395–12, Boston, 1993, pp. 665–674Google Scholar
  47. 47.
    R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer Verlag, New York 1948), reprinted 1976, pp. 297–302Google Scholar
  48. 48.
    D.S. Stewart, J.B. Bdzil, Examples of detonation shock dynamics for detonation wave spreading. in Proceedings of the Ninth Symposium (International) on Detonation, OCNR 113291–7, Portland, 1989, pp. 773–783Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Energetics Technology CenterSt. CharlesUSA

Personalised recommendations