Adaptive Self-triggered Control of a Remotely Operated Robot

  • Carlos Santos
  • Manuel MazoJr.
  • Felipe Espinosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)


We consider the problem of remotely operating an autonomous robot through a wireless communication channel. Our goal is to achieve a satisfactory tracking performance while reducing network usage. To attain this objective we implement a self-triggered strategy that adjusts the triggering condition to the observed tracking error. After the theoretical justification we present experimental results from the application of this adaptive self-triggered approach on a P3-DX mobile robot remotely controlled. The experiments show a relevant reduction on the generated network traffic compared to a periodic implementation and to a non-adaptive self-triggered approach, while the tracking performance is barely degraded.


Network Control System Full State Packet Dropout String Stability Wireless Communication Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antsaklis, P., Michel, A.N.: Linear Systems. McGraw-Hill (1997)Google Scholar
  2. 2.
    Bocos, A., Espinosa, F., Salazar, M., Valdés, F.: Compensation of channel packet dropout based on TVKF optimal estimator for robotics teleoperation. In: International Conference on Robotics and Automation, ICRA (2008)Google Scholar
  3. 3.
    Cogill, R.: Event-based control using quadratic approximate value functions. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 5883–5888 (December 2009)Google Scholar
  4. 4.
    Dunbar, W., Caveney, D.: Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Transactions on Automatic Control 57(3), 620–633 (2012)CrossRefGoogle Scholar
  5. 5.
    Duton, K., Thompson, S., Barraclough, B.: The art of control engineering. Addison-Wesley (1997)Google Scholar
  6. 6.
    Espinosa, F., Salazar, M., Pizarro, D., Valdés, F.: Electronics proposal for telerobotics operation of P3-DX units. In: INTECH (ed.) Remote and Telerobotics, pp. 1–16 (2010)Google Scholar
  7. 7.
    Espinosa, F., Salazar, M., Valdés, F., Bocos, A.: Communication architecture based on player/stage and sockets for cooperative guidance of robotic units. In: 16th Mediterranean Conference on Control and Automation, pp. 1423–1428 (June 2008)Google Scholar
  8. 8.
    Espinosa, F., Santos, C., Marrón-Romera, M., Pizarro, D., Valdés, F., Dongil, J.: Odometry and laser scanner fusion based on a discrete extended kalman filter for robotic platooning guidance. Sensors 11(9), 8339–8357 (2011), CrossRefGoogle Scholar
  9. 9.
    Hashimoto, H.: Present state and future of intelligent spaces - discussion on the implementation of rt in our environment. Artificial Life and Robotics 11, 1–7 (2007)CrossRefGoogle Scholar
  10. 10.
    Hespanha, J., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proceedings of the IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  11. 11.
    Levine, W.S.: The control handbook. IEEE-Press (1996)Google Scholar
  12. 12.
    Mazo Jr., M., Anta, A., Tabuada, P.: On self-triggered control for linear systems: Guarantees and complexity. In: European Control Conference (2009)Google Scholar
  13. 13.
    Mazo Jr., M., Anta, A., Tabuada, P.: An ISS self-triggered implementation of linear controller. Automatica 46(8), 1310–1314 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Monekosso, D., Remagnino, P., Kuno, Y.: Intelligent environments: methods, algorithms and applications. Springer (2009)Google Scholar
  15. 15.
    Santana, I., Ferre, M., Izaguirre, E., Aracil, R., Hernandez, L.: Remote laboratories for education and research purposes in automatic control systems. IEEE Transactions on Industrial Informatics PP(99), 1 (2012)Google Scholar
  16. 16.
    Santos, C., Espinosa, F., Pizarro, D., Valdés, F., Santiso, E., Díaz, I.: Fuzzy decentralized control for guidance of a convoy of robots in non-linear trajectories. In: IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (September 2010)Google Scholar
  17. 17.
    Stefan, O., Codrean, A., Dragomir, T., Silea, I.: Time delay and information loss compensation in a network control system for a dc motor. In: 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 131–135 (May 2011)Google Scholar
  18. 18.
    Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52(9), 1680–1685 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, X., Lemmon, M.: Event design in event-triggered feedback control systems. In: 47th IEEE Conference on Decision and Control, pp. 2105–2110 (December 2008)Google Scholar
  20. 20.
    Ware, J., Pan, Y.J.: Realisation of a bilaterally teleoperated robotic vehicle platform with passivity control. Control Theory Applications, IET 5(8), 952–962 (2011)CrossRefGoogle Scholar
  21. 21.
    Xue, Y., Liu, K.: Controller design for variable-sampling networked control systems with dynamic output feedback. In: 7th World Congress on Intelligent Control and Automation, WCICA, pp. 6391–6396 (June 2008)Google Scholar
  22. 22.
    Yazbeck, J., Scheuer, A., Simonin, O., Charpillet, F.: Improving near-to-near lateral control of platoons without communication. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4103–4108 (September 2011)Google Scholar
  23. 23.
    Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.S.: Dynamical Systems Revisited: Hybrid Systems with Zeno Executions. In: Lynch, N., Krogh, B. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 451–464. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos Santos
    • 1
  • Manuel MazoJr.
    • 2
    • 3
  • Felipe Espinosa
    • 1
  1. 1.Electronics Department, Polytechnic SchoolUniversity of AlcalaSpain
  2. 2.INCAS3AssenThe Netherlands
  3. 3.Faculty of Mathematics and Natural SciencesUniversity of GroningenThe Netherlands

Personalised recommendations