Advertisement

A Wandering Braitenberg Vehicle 2b That Densely Covers a Bounded Workspace

  • Iñaki Rañó
  • Jean-Stephane Jokeit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

Braitenberg vehicles have been used in robotics for decades on an empirical basis. This paper presents the dynamic equations describing the motion of vehicle 2b and derives a wandering control mechanism based on them. Using this controller, a dual-drive vehicle is proved to move continuously on a bounded environment without colliding with obstacles. Unlike other wandering mechanisms, it does not rely on a stochastic component, but instead its motion is determined by a system of deterministic nonlinear differential equations. We prove that, under some assumptions on the workspace and controller, the mechanism generates dense trajectories on the workspace. Dense trajectories are suitable for coverage tasks. Simulations of a robot with range sensing capabilities are used to test the theoretical results. This work presents the application of some of the first formal, non purely empirical, results of Braitenberg vehicles to robotics.

Keywords

Periodic Solution Equilibrium Point Mobile Robot Stable Manifold Obstacle Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braitenberg, V.: Vehicles. Experiments in synthetic psychology. The MIT Press (1984)Google Scholar
  2. 2.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)CrossRefGoogle Scholar
  3. 3.
    Bicho, E., Schöner, G.: The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform. Robotics and Autonomous Systems 21, 23–35 (1997)CrossRefGoogle Scholar
  4. 4.
    Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous Systems 16, 213–245 (1995)CrossRefGoogle Scholar
  5. 5.
    Yang, X., Patel, R.V., Moallem, M.: A Fuzzy-Braitenberg Navigation Strategy for Differential Drive Mobile Robots. Journal of Intelligent Robotic Systems 47, 101–124 (2006)CrossRefGoogle Scholar
  6. 6.
    Lilienthal, A.J., Duckett, T.: Experimental analysis of gas-sensitive Braitenberg vehicles. Advanced Robotics 18(8), 817–834 (2004)CrossRefGoogle Scholar
  7. 7.
    Meriçli, T., Akın, H.L.: Soccer without intelligence. In: Proc. of the 2008 IEEE Int. Conf. on Robotics and Biomimetics, pp. 2079–2084 (2008)Google Scholar
  8. 8.
    Mautner, C., Belew, R.K.: Evolving robot morphology and control. Artificial Life and Robotics 4, 130–136 (2000)CrossRefGoogle Scholar
  9. 9.
    Salomon, R.: Evolving and optimizing Braitenberg vehicles by means of evolution strategies. Int. J. Smart Eng. Syst. Design 2, 69–77 (1999)Google Scholar
  10. 10.
    Choset, H.: Coverage for robotics – a survey of recent results. Annals of Mathematics and Artificial Intelligence 31, 113–126 (2001)CrossRefGoogle Scholar
  11. 11.
    Lauomnd, J.P., Jacobs, P., Taïx, M., Murray, R.: A motion planner for nonholonomic mobile robots. IEEE Trans. on Robotics and Automation 10(5), 577–593 (1994)CrossRefGoogle Scholar
  12. 12.
    MacKenzie, D., Balch, T.: Making a clean sweep: Behaviour based vacuuming. In: AAAI Fall Symposium, Instationating Real-World Agents (1996)Google Scholar
  13. 13.
    McCrea, W.H., Whipple, F.J.W.: Random paths in two and threedimensions. Proceedings of the Royal Society Edinburgh 60, 281–298 (1940)MathSciNetGoogle Scholar
  14. 14.
    Rañó, I.: A systematic analysis of the braitenberg vehicle 2b for point like stimulus sources. To appear in Bioinspiration & Biomimetics (2012)Google Scholar
  15. 15.
    Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer (1989)Google Scholar
  16. 16.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5(1) (1986)Google Scholar
  17. 17.
    Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics 11(4), 412–442 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    O’Rourke, J., Badler, N.: Decomposition of three-dimensional objects into spheres. IEEE Trans. on Pattern Analysis and Machine Intelligence 1(3), 295–305 (1979)CrossRefGoogle Scholar
  19. 19.
    Rañó, I.: An Empirical Evidence of Braitenberg Vehicle 2b Behaving as a Billiard Ball. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 293–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Tabachnikov, S.: Geometry and Billiards. American Mathematical Society (2005)Google Scholar
  21. 21.
    Rañó, I., Smithers, T.: Obstacle avoidance through Braitenberg’s aggression behavior and motor fusion. In: Proc. of the 2nd European Conf. on Mobile Robots, pp. 98–103 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Iñaki Rañó
    • 1
  • Jean-Stephane Jokeit
    • 1
  1. 1.Institut für NeuroinformatikRuhr-Universität-BochumGermany

Personalised recommendations