Advertisement

Walking Control Method of Humanoid Robot Based on FSR Sensors and Inverted Pendulum Model

  • Bi Sheng
  • Min Huaqing
  • Zhuang Zhongjie
  • Huang Quanyong
  • Mo Huaxi
  • Zhou Yanping
  • Li Shaojun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

Stable biped walking is an important and essential aspect in humanoid robots. In this paper, a method is proposed to control humanoid robot to walk stably based on Force Sensing Resistor (FSR) sensors and Inverted Pendulum Model (IPM). Firstly, an offline gait planning method is proposed based on IPM by using some parameters to describe walking process. Then Zero Moment Point (ZMP) can be calculated by using FSR sensors that attached to the feet. Thirdly, a ZMP controller is designed to adjust the robot’s ankle, hip and knee joint’s angle to make the robot walk stably. Finally, the performance of the proposed method is verified by walking experiments on a 21-DOFs humanoid robot, SCUT-I.

Keywords

Humanoid robot ZMP FSR Inverted Pendulum Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirai, K., Hirose, M., Haikawa, Y., et al.: The development of Honda robot. In: 1998 IEEE International Conference on Robotics and Automation, pp. 1321–1326. IEEE Press, Leuven (1998)Google Scholar
  2. 2.
    Kenji, K., Fumio, K., Shuuji, K., et al.: Design of prototype humanoid robotics platform for HRP. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2431–2436. IEEE Press, Lausanne (2002)Google Scholar
  3. 3.
    Ill-WooPark, Kim, J.-Y., Park, S.-W., Oh, J.-H.: Development of Humanoid Robot Platform KHR-2. In: 4th IEEE/RAS International Conference on Humanoid Robots, Santa Monica, CA, pp. 292–310 (2004)Google Scholar
  4. 4.
    Vukobratovic, M., Borovac, B.: Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 157–173 (2004)Google Scholar
  5. 5.
    Kajita, S., Kanehiro, F., Kaneko, K., et al.: The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. In: Proceedings of IEEE/RSJ, International Conference on Intelligent Robots and System, pp. 239–246. IEEE Press, Maui (2001)Google Scholar
  6. 6.
    McGeer, T.: Passive dynamic walking. Intern. J. Robot. Res. 9(2), 62–82 (1990)CrossRefGoogle Scholar
  7. 7.
    Park, C.-S., Hong, Y.-D., Kim, J.-H.: Full-body Joint Trajectory Generation Using an Evolutionary Central Pattern Generator for Stable Bipedal Walking. In: The 2010 IEEE/RSJ International Conference on Intelligent Robots and System, pp. 160–165 (2010)Google Scholar
  8. 8.
    Kim, Y.-D., Lee, B.-J., Yoo, J.-K., Kim, J.-H., Ryu, J.-H.: Compensation for the Landing Impact Force of a Humanoid Robot by Time Domain Passivity Approach. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, pp. 1225–1230 (2006)Google Scholar
  9. 9.
    Kong, J.-S., Lee, E.-H., Lee, B.-H., Kim, J.-G.: Study on the Real-Time Walking Control of a Humanoid Robot Using Fuzzy Algorithm. International Journal of Control, Automation, and Systems 6(4), 551–558 (2008)MathSciNetGoogle Scholar
  10. 10.
    Dautenhahn, K., Wood, L.: Using FSR Sensors to Provide Tactile Skin to the Humanoid Robot KASPAR, Technical Report 511, School of Computer Science, University of Hertfordshire, pp.1-13 (2011)Google Scholar
  11. 11.
    Force sensing resistor integration guide and evaluation parts catalog[EB/ OL], http://www.interlinkelectronics.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bi Sheng
    • 1
  • Min Huaqing
    • 2
  • Zhuang Zhongjie
    • 1
  • Huang Quanyong
    • 1
  • Mo Huaxi
    • 2
  • Zhou Yanping
    • 1
  • Li Shaojun
    • 1
  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Software EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations