Advertisement

Process Modeling and Task Execution of FIRA Weight-Lifting Games with a Humanoid Robot

  • Chung-Hsien Kuo
  • Yu-Chen Kuo
  • Ting-Shuo Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

This paper presents a model-based implementation approach for controlling a humanoid robot to play weight-lifting games in FIRA HuroCup League. The Petri net-based wireless sensor node architecture (PN-WSNA) is used in this paper to perform the decision making for playing weight-lifting games according to visual perceptions. Furthermore, the PN-WSNA models are executed with a PN-WSNA inference engine, and the inferred decision is applied to an autonomous small size humanoid robot. Finally, the execution of the PN-WSNA models for playing a weight-lifting game is discussed to validate the feasibility of using PN-WSNA-based implementation approaches.

Keywords

humanoid robots autonomous robots model-based implementations Petri nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FIRA Information, http://www.fira.net/
  2. 2.
    Chou, H.C., Chung, J.C., Kuo, C.H.: Vision-guided Obstacle Map Constructions of a Biped Robot with FIRA HuroCup Games. In: International Conference on Service and Interactive Robots, Taiwan, pp. 337–342 (2011)Google Scholar
  3. 3.
    Yoshida, E., Esteves, C., Belousov, I., Laumond, J.P., Sakaguchi, T., Yokoi, K.: Planning 3-D Collision-free Dynamic Robotic Motion Through Iterative Reshaping. IEEE Transactions on Robotics 24(5), 1186–1198 (2008)CrossRefGoogle Scholar
  4. 4.
    Erbatur, K., Kurt, O.: Natural ZMP Trajectories for Biped Robot Reference Generation. IEEE Transactions on Industrial Electronics 56(3), 835–845 (2009)CrossRefGoogle Scholar
  5. 5.
    Rodríguez-Reséndiz, J., Herrera-Ruiz, G., Rivas-Araiza, E.A.: Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory. IEEE Transactions on Education 54(4), 657–666 (2011)CrossRefGoogle Scholar
  6. 6.
    He, T., Peng, L.: Application of Neuron Adaptive PID on DSPACE in Double Loop DC Motor Control System. In: International Conference Computing, Control and Industrial Engineering, China, pp. 257–260 (2010)Google Scholar
  7. 7.
    Kuo, C.H., Chen, T.S.: PN-WSNA: An Approach for Reconfigurable Cognitive Sensor Network Implementations. IEEE Sensors Journal 11(2), 319–334 (2011)CrossRefGoogle Scholar
  8. 8.
    Robotis Product Information, http://www.robotis.com/xe/
  9. 9.
  10. 10.
    Pico-820 Single Board Computer Information, http://www.axiomtek.com.tw/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chung-Hsien Kuo
    • 1
  • Yu-Chen Kuo
    • 1
  • Ting-Shuo Chen
    • 1
  1. 1.Department of Electrical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations