Advertisement

Mobile Robot Obstacle Avoidance Based on Quasi-Holonomic Smooth Paths

  • Leopoldo Armesto
  • Vicent Girbés
  • Markus Vincze
  • Sven Olufs
  • Pau Muñoz-Benavent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

The paper explores the benefits of using continuous curvature 2D paths in obstacle avoidance methods in terms of safety and comfort. To this end the paper proposes a novel contribution by introducing clothoid-based smooth paths for non-holonomic robots defined from Cartesian (x,y) and angular velocities, as if they were intended to be applied to holonomic robots. To remark, these paths, coined as quasi-holonomic continuous curvature paths (QHCC), generate purely non-holonomic motions (combinations of linear and angular velocities) that mimic a holonomic motion. In fact, QHCC paths converge to the same asymptotic direction pointed by the holonomic motion while taking into account kinematic and dynamic constraints. In the paper, we show how these paths can be used and integrated in well-known obstacle avoidance algorithms such as Nearness Diagram (ND) and Dynamic Window Approach (DWA), among others. In addition to this, an ANN has been trained to considerably speed-up the path generation process and to learn the intrinsics of the path. Additionally, the paper shows the advantages of the proposed method over standard obstacle avoidance algorithms.

Keywords

Smooth paths Obstacle avoidance Clothoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marchionna, A., Perco, P.: A proposal to update the clothoid parameter limiting criteria of the italian standard. In: Int. Società Italiana Infrastrutture Viarie Congress (2007)Google Scholar
  2. 2.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Press (1991)Google Scholar
  3. 3.
    Ulrich, I., Borenstein, J.: Vfh*: Local obstacle avoidance with look-ahead verification. In: IEEE Int. Conf. Robotics and Automation, pp. 2505–2511 (2001)Google Scholar
  4. 4.
    Minguez, J., Montano, L.: Nearness diagram (nd) navigation: Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation 1(20), 45–59 (2004)CrossRefGoogle Scholar
  5. 5.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine 4(1), 23–33 (1997)CrossRefGoogle Scholar
  6. 6.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B.P., Konolige, K.: The office marathon: Robust navigation in an indoor office environment. In: International Conference on Robotics and Automation (May 2010)Google Scholar
  7. 7.
    Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. Trans. Rob. 26, 635–646 (2010)CrossRefGoogle Scholar
  8. 8.
    Minguez, J., Montano, L.: Extending collision avoidance methods to consider the vehicle shape, the kinematics, and dynamics of a mobile robot. IEEE Transaction on Robotics 25(2), 367–381 (2009)CrossRefGoogle Scholar
  9. 9.
    Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM 40, 1048–1066 (1993), http://doi.acm.org/10.1145/174147.174150 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Scheuer, A., Fraichard, T.: Continuous-curvature path planning for car-like vehicles. In: IEEE Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 997–1003 (1997)Google Scholar
  11. 11.
    Fraichard, T., Scheuer, A.: From reeds and shepp’s to continuous-curvature paths. IEEE Trans. on Robotics and Automation 20(6), 1025–1035 (2004)Google Scholar
  12. 12.
    Yang, K., Sukkarieh, S.: Real-time continuous curvature path planning of uavs in cluttered environments. In: Int. Symp. on Mechatronics and its Applications (2008)Google Scholar
  13. 13.
    Labakhua, L., Nunes, U., Rodrigues, R., Leite, F.S.: Smooth trajectory planning for fully automated passengers vehicles. spline and clothoid based methods and its simulation. In: Informatics in Control Automation and Robotics. Springer (2008)Google Scholar
  14. 14.
    Wilde, D.K.: Computing clothoid segments for trajectory generation. In: IEEE Int. Conf. on Intelligent Robots and Systems, pp. 2440–2445 (2009)Google Scholar
  15. 15.
    Manz, M., von Hundelshausen, F., Wuensche, H.-J.: A hybrid estimation approach for autonomous dirt road following using multiple clothoid segments. In: IEEE Int. Conf. on Robotics and Automation, pp. 2410–2415 (2010)Google Scholar
  16. 16.
    Girbés, V., Armesto, L., Tornero, J.: On generating continuous-curvature paths for line following problem with curvature and sharpness constraints. In: IEEE Int. Conf. on Robotics and Automation, pp. 6156–6161 (May 2011)Google Scholar
  17. 17.
    Girbés, V., Armesto, L., Tornero, J., Ernesto Solanes, J.: Smooth Kinematic Controller vs. Pure-Pursuit for Non-holonomic Vehicles. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 277–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Lau, B., Sprunk, C., Burgard, W.: Kinodynamic motion planning for mobile robots using splines. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 2427–2433 (October 2009)Google Scholar
  19. 19.
    Parlangeli, G., Ostuni, L., Mancarella, L., Indiveri, G.: A motion planning algorithm for smooth paths of bounded curvature and curvature derivative. In: 17th Mediterranean Conference on Control and Automation, MED 2009, pp. 73–78 (June 2009)Google Scholar
  20. 20.
    Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics 145, 367–393 (1990)MathSciNetGoogle Scholar
  21. 21.
    LaValle, S.M., James, J., Kuffner, J.: Randomized kinodynamic planning. The International Journal of Robotics Research 20(5), 378–400 (2001)CrossRefGoogle Scholar
  22. 22.
    Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics 26, 308–333 (2009), no. CMU-RI-TRGoogle Scholar
  23. 23.
    Lamiraux, F., Laumond, J.-P.: Smooth motion planning for car-like vehicles. IEEE Transactions on Robotics and Automation 17, 498–502 (2001)CrossRefGoogle Scholar
  24. 24.
    Sekhavat, S., Svestka, P., Laumond, J.P., Overmars, M.H.: Multi-level path planning for nonholonomic robots using semi-holonomic subsystems. Int. J. Robot. Res. 17, 840–857 (1996)CrossRefGoogle Scholar
  25. 25.
    Nissen, S.: Implementation of a fast artificial neural network library (fann). Department of Computer Science University of Copenhagen (DIKU), Tech. Rep. (2003), http://fann.sf.net
  26. 26.
    Nissen, S.: Large scale reinforcement learning using q-sarsa(λ) and cascading neural networks, p. 264 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leopoldo Armesto
    • 1
  • Vicent Girbés
    • 1
  • Markus Vincze
    • 2
  • Sven Olufs
    • 2
  • Pau Muñoz-Benavent
    • 1
  1. 1.Institute of Design and ManufacturingUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Automation and Control Institute (ACIN)Vienna University of TechnologyViennaAustria

Personalised recommendations