Advertisement

A Force-Distance Model of Humanoid Arm Withdrawal Reflexes

  • Torbjørn S. Dahl
  • Alexandros Paraschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

This paper presents the force-distance model of humanoid robot arm withdrawal reflexes. The model was developed in order to provide humanoid robots with a generic withdrawal reflex that could complement other robot safety mechanisms based on collision avoidance, reduced momentum, and compliance. The model goes beyond existing work on withdrawal behaviours by studying reflexes for arbitrary poses on a humanoid robots. It is inspired by a human withdrawal reflex trigger mechanism, the reflex receptive field and the withdrawal motions in the model are based on human reflex motion data. The model is implemented on a Nao humanoid robot with its upper and lower arms covered in a custom made tactile skin sensor. The efficiency of the resulting reflexes is analysed in terms of the distance the stimulation point on the robot is moved away from the spacial point of impact and in terms of whether the robot collides with itself during the expression of the reflex.

Keywords

robot safety reflexes tactile sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haddadin, S., Albu-Schafer, A., Hirzinger, G.: Requirements a for safe robots: Measurements, analysis and new insights. International Journal of Robotics Research 28(11-12), 1507–1527 (2009)CrossRefGoogle Scholar
  2. 2.
    Duchaine, V., Lauzier, N., Baril, M., Lacasse, M.A., Gosselin, C.: A flexible robot skin for safe physical human robot interaction. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan, May 12-17, pp. 3676–2681 (2009)Google Scholar
  3. 3.
    Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G.: Methods and technologies for the implementation of large scale robot tactile sensors. IEEE Transactions on Robotics, Special Issue on Robot Sense of Touch 27(3), 389–400 (2011)Google Scholar
  4. 4.
    Schouenborg, J., Weng, H.R., Holmberg, H.: Modular organization of spinal nociceptive reflexes: A new hypothesis. News in Physiological Sciences 9, 261–265 (1994)Google Scholar
  5. 5.
    Dahl, T.S., Swere, E.A.R., Palmer, A.: Touch-triggered withdrawal reflexes for safer robots. In: Dautenhahn, K., Saunders, J. (eds.) New Frontiers in Human-Robot Interaction, pp. 281–304. John Benjamins Publishing Company (2011)Google Scholar
  6. 6.
    Kunz, T., Reiser, U., Stilman, M., Verl, A.: Real-time path planning for a robot arm in changing environments. In: IEEE/RSJ International Conference on Intelligent Robots and System (IROS 2010), Taipei, Taiwan, October 18-22, pp. 5906–5911 (2010)Google Scholar
  7. 7.
    Elkmann, N., Fritzsche, M., Schulenburg, E.: Tactile sensing for safe physical human-robot interaction. In: Proceedings of the Fourth International Conference on Advances in Human-Computer Interaction (ACHI 2011), Guadeloupe, France, February 23-28, pp. 212–217 (2011)Google Scholar
  8. 8.
    Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems 18(1-2), 59–64 (2005)CrossRefGoogle Scholar
  9. 9.
    Tondu, B., Ippolito, S., Guiochet, J., Daidie, A.: A seven-degrees-offreedom robot-arm driven by pneumatic artificial muscles for humanoid robots. International Journal of Robotics Research 24(4), 257–274 (2005)CrossRefGoogle Scholar
  10. 10.
    Meyer, F., Sprowitz, A., Berthouze, L.: Passive compliance for a rc servo-controlled bouncing robot. Advanced Robotics 20(8), 953–961 (2006)CrossRefGoogle Scholar
  11. 11.
    kook Yun, S.: Compliant manipulation for peg-in-hole: Is passive compliance a key to learn contact motion? In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008), Pasadena, California, May 19-23, pp. 1647–1652 (2008)Google Scholar
  12. 12.
    Walters, M.L., Syrdal, D.S., Dautenhahn, K., Boekhorst, R., Koay, K.L.: Avoiding the uncanny valley: Robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion. Autonomous Robots, Special Issue on Socially Assistive Robotics 24(2), 159–178 (2008)Google Scholar
  13. 13.
    Bekey, G.A., Tomovic, R.: Robot control by reflex actions. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1986), vol. 3, pp. 240–247 (1986)Google Scholar
  14. 14.
    Brooks, R.A., Breazeal, C., Marjanovic, M., Scassellati, B., Williamson, M.M.: The Cog Project: Building a Humanoid Robot. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 52–87. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Argall, B., Billard, A.: A survey of tactile human-robot interactions. Robotics and Autonomous Systems 58(10), 1117–1176 (2010)CrossRefGoogle Scholar
  16. 16.
    Kuroki, Y., Fukushima, T., Nagasaka, K., Moridaira, T., Doi, T.T., Yamaguchi, J.: A small biped entertainment robot exploring human-robot interactive applications. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2003), Millbrae, California, October 31-November 2, pp. 303–308 (2003)Google Scholar
  17. 17.
    Hagbarth, K.E., Finer, B.L.: The plasticity of human withdrawal reflexes to noxious skin stimuli in lower limbs. Progress in Brain Research 1, 65–81 (1963)CrossRefGoogle Scholar
  18. 18.
    Serrao, M., Pierelli, F., Don, R., Ranavolo, A., Cacchio, A., Curra, A., Sandrini, G., Frascarelli, M., Santilli, V.: Kinematic and electromyographic study of the nociceptive withdrawal reflex in the upper limbs during rest and movement. Journal of Neuroscience 26(13), 3505–3513 (2006)CrossRefGoogle Scholar
  19. 19.
    Andersen, O.K., Sonnenborg, F.A., Arendt-Nielsen, L.: Modular organization of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle and Nerve 22(11), 1520–1530 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Torbjørn S. Dahl
    • 1
  • Alexandros Paraschos
    • 2
  1. 1.Cognitive Robotics Research CentreUniversity of WalesNewportUK
  2. 2.Intelligent Autonomous Systems Lab.Technische Universitaet DarmstadtGermany

Personalised recommendations